A 1-norm bound for inverses of triangular matrices with monotone entries.
We consider inhomogeneous matrix products over max-plus algebra, where the matrices in the product satisfy certain assumptions under which the matrix products of sufficient length are rank-one, as it was shown in [6] (Shue, Anderson, Dey 1998). We establish a bound on the transient after which any product of matrices whose length exceeds that bound becomes rank-one.
We analyze a boundary-value problem for linear partial differential algebraic equations, or PDAEs, by using the method of the separation of variables. The analysis is based on the Kronecker-Weierstrass form of the matrix pencil[A,-λ_n B]. A new theorem is proved and two illustrative examples are given.
Given a square matrix A, a Brauer’s theorem [Brauer A., Limits for the characteristic roots of a matrix. IV. Applications to stochastic matrices, Duke Math. J., 1952, 19(1), 75–91] shows how to modify one single eigenvalue of A via a rank-one perturbation without changing any of the remaining eigenvalues. Older and newer results can be considered in the framework of the above theorem. In this paper, we present its application to stabilization of control systems, including the case when the system...