Page 1 Next

Displaying 1 – 20 of 69

Showing per page

G L n -Invariant tensors and graphs

Martin Markl (2008)

Archivum Mathematicum

We describe a correspondence between GL n -invariant tensors and graphs. We then show how this correspondence accommodates various types of symmetries and orientations.

General construction of Banach-Grassmann algebras

Vladimir G. Pestov (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We show that a free graded commutative Banach algebra over a (purely odd) Banach space E is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if and only if E is infinite-dimensional. Thus, a large amount of new examples of separable Banach-Grassmann algebras arise in addition to the only one example previously known due to A. Rogers.

General theory of Lie derivatives for Lorentz tensors

Lorenzo Fatibene, Mauro Francaviglia (2011)

Communications in Mathematics

We show how the ad hoc prescriptions appearing in 2001 for the Lie derivative of Lorentz tensors are a direct consequence of the Kosmann lift defined earlier, in a much more general setting encompassing older results of Y. Kosmann about Lie derivatives of spinors.

Generalizations of Milne’s U ( n + 1 ) q -Chu-Vandermonde summation

Jian-Ping Fang (2016)

Czechoslovak Mathematical Journal

We derive two identities for multiple basic hyper-geometric series associated with the unitary U ( n + 1 ) group. In order to get the two identities, we first present two known q -exponential operator identities which were established in our earlier paper. From the two identities and combining them with the two U ( n + 1 ) q -Chu-Vandermonde summations established by Milne, we arrive at our...

Generalizations of Nekrasov matrices and applications

Ljiljana Cvetković, Vladimir Kostić, Maja Nedović (2015)

Open Mathematics

In this paper we present a nonsingularity result which is a generalization of Nekrasov property by using two different permutations of the index set. The main motivation comes from the following observation: matrices that are Nekrasov matrices up to the same permutations of rows and columns, are nonsingular. But, testing all the permutations of the index set for the given matrix is too expensive. So, in some cases, our new nonsingularity criterion allows us to use the results already calculated...

Generalized Conley-Zehnder index

Jean Gutt (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

The Conley-Zehnder index associates an integer to any continuous path of symplectic matrices starting from the identity and ending at a matrix which does not admit 1 as an eigenvalue. Robbin and Salamon define a generalization of the Conley-Zehnder index for any continuous path of symplectic matrices; this generalization is half integer valued. It is based on a Maslov-type index that they define for a continuous path of Lagrangians in a symplectic vector space ( W , Ω ¯ ) , having chosen a given reference...

Currently displaying 1 – 20 of 69

Page 1 Next