Displaying 1321 – 1340 of 2599

Showing per page

n-supercyclic and strongly n-supercyclic operators in finite dimensions

Romuald Ernst (2014)

Studia Mathematica

We prove that on N , there is no n-supercyclic operator with 1 ≤ n < ⌊(N + 1)/2⌋, i.e. if N has an n-dimensional subspace whose orbit under T ( N ) is dense in N , then n is greater than ⌊(N + 1)/2⌋. Moreover, this value is optimal. We then consider the case of strongly n-supercyclic operators. An operator T ( N ) is strongly n-supercyclic if N has an n-dimensional subspace whose orbit under T is dense in ( N ) , the nth Grassmannian. We prove that strong n-supercyclicity does not occur non-trivially in finite...

Numerical radius inequalities for 2 × 2 operator matrices

Omar Hirzallah, Fuad Kittaneh, Khalid Shebrawi (2012)

Studia Mathematica

We derive several numerical radius inequalities for 2 × 2 operator matrices. Numerical radius inequalities for sums and products of operators are given. Applications of our inequalities are also provided.

Currently displaying 1321 – 1340 of 2599