Displaying 1961 – 1980 of 2599

Showing per page

Solutions of minus partial ordering equations over von Neumann regular rings

Yu Guan, Zhaojia Tong (2015)

Open Mathematics

In this paper, we mainly derive the general solutions of two systems of minus partial ordering equations over von Neumann regular rings. Meanwhile, some special cases are correspondingly presented. As applications, we give some necessary and sufficient conditions for the existence of solutions. It can be seen that some known results can be regarded as the special cases of this paper.

Solvability classes for core problems in matrix total least squares minimization

Iveta Hnětynková, Martin Plešinger, Jana Žáková (2019)

Applications of Mathematics

Linear matrix approximation problems A X B are often solved by the total least squares minimization (TLS). Unfortunately, the TLS solution may not exist in general. The so-called core problem theory brought an insight into this effect. Moreover, it simplified the solvability analysis if B is of column rank one by extracting a core problem having always a unique TLS solution. However, if the rank of B is larger, the core problem may stay unsolvable in the TLS sense, as shown for the first time by Hnětynková,...

Solvability of (max,+) and (min,+)-equation systems

Karel Zimmermann (2025)

Kybernetika

Properties of (max,+)-linear and (min,+)-linear equation systems are used to study solvability of the systems. Solvability conditions of the systems are investigated. Both one-sided and two-sided systems are studied. Solvability of one class of (max,+)-nonlinear problems will be investigated. Small numerical examples illustrate the theoretical results.

Solving systems of two–sided (max, min)–linear equations

Martin Gavalec, Karel Zimmermann (2010)

Kybernetika

A finite iteration method for solving systems of (max, min)-linear equations is presented. The systems have variables on both sides of the equations. The algorithm has polynomial complexity and may be extended to wider classes of equations with a similar structure.

Solving the sensor cover energy problem via integer linear programming

Pingke Li (2021)

Kybernetika

This paper demonstrates that the sensor cover energy problem in wireless communication can be transformed into a linear programming problem with max-plus linear inequality constraints. Consequently, by a well-developed preprocessing procedure, it can be further reformulated as a 0-1 integer linear programming problem and hence tackled by the routine techniques developed in linear and integer optimization. The performance of this two-stage solution approach is evaluated on a set of randomly generated...

Some decision problems on integer matrices

Christian Choffrut, Juhani Karhumäki (2005)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Given a finite set of matrices with integer entries, consider the question of determining whether the semigroup they generated 1) is free; 2) contains the identity matrix; 3) contains the null matrix or 4) is a group. Even for matrices of dimension 3 , questions 1) and 3) are undecidable. For dimension 2 , they are still open as far as we know. Here we prove that problems 2) and 4) are decidable by proving more generally that it is recursively decidable whether or not a given non singular matrix belongs...

Some decision problems on integer matrices

Christian Choffrut, Juhani Karhumäki (2010)

RAIRO - Theoretical Informatics and Applications

Given a finite set of matrices with integer entries, consider the question of determining whether the semigroup they generated 1) is free; 2) contains the identity matrix; 3) contains the null matrix or 4) is a group. Even for matrices of dimension 3, questions 1) and 3) are undecidable. For dimension 2, they are still open as far as we know. Here we prove that problems 2) and 4) are decidable by proving more generally that it is recursively decidable whether or not a given non singular matrix belongs...

Currently displaying 1961 – 1980 of 2599