Displaying 1001 – 1020 of 3966

Showing per page

F-quasigroups isotopic to groups

Tomáš Kepka, Michael K. Kinyon, Jon D. Phillips (2010)

Commentationes Mathematicae Universitatis Carolinae

In Kepka T., Kinyon M.K., Phillips J.D., The structure of F-quasigroups, math.GR/0510298, we showed that every loop isotopic to an F-quasigroup is a Moufang loop. Here we characterize, via two simple identities, the class of F-quasigroups which are isotopic to groups. We call these quasigroups FG-quasigroups. We show that FG-quasigroups are linear over groups. We then use this fact to describe their structure. This gives us, for instance, a complete description of the simple FG-quasigroups. Finally,...

Free actions on semiprime rings

Muhammad Anwar Chaudhry, Mohammad S. Samman (2008)

Mathematica Bohemica

We identify some situations where mappings related to left centralizers, derivations and generalized ( α , β ) -derivations are free actions on semiprime rings. We show that for a left centralizer, or a derivation T , of a semiprime ring R the mapping ψ R R defined by ψ ( x ) = T ( x ) x - x T ( x ) for all x R is a free action. We also show that for a generalized ( α , β ) -derivation F of a semiprime ring R , with associated ( α , β ) -derivation d , a dependent element a of F is also a dependent element of α + d . Furthermore, we prove that for a centralizer f and...

Free associative algebras, noncommutative Gröbner bases, and universal associative envelopes for nonassociative structures

Murray R. Bremner (2014)

Commentationes Mathematicae Universitatis Carolinae

First, we provide an introduction to the theory and algorithms for noncommutative Gröbner bases for ideals in free associative algebras. Second, we explain how to construct universal associative envelopes for nonassociative structures defined by multilinear operations. Third, we extend the work of Elgendy (2012) for nonassociative structures on the 2-dimensional simple associative triple system to the 4- and 6-dimensional systems.

Free dynamical quantum groups and the dynamical quantum group S U Q d y n ( 2 )

Thomas Timmermann (2012)

Banach Center Publications

We introduce dynamical analogues of the free orthogonal and free unitary quantum groups, which are no longer Hopf algebras but Hopf algebroids or quantum groupoids. These objects are constructed on the purely algebraic level and on the level of universal C*-algebras. As an example, we recover the dynamical S U q ( 2 ) studied by Koelink and Rosengren, and construct a refinement that includes several interesting limit cases.

Frobenius n-group algebras

Biljana Zeković (2002)

Discussiones Mathematicae - General Algebra and Applications

Frobenius algebras play an important role in the representation theory of finite groups. In the present work, we investigate the (quasi) Frobenius property of n-group algebras. Using the (quasi-) Frobenius property of ring, we can obtain some information about constructions of module category over this ring ([2], p. 66-67).

From factorizations of noncommutative polynomials to combinatorial topology

Vladimir Retakh (2010)

Open Mathematics

This is an extended version of a talk given by the author at the conference “Algebra and Topology in Interaction” on the occasion of the 70th Anniversary of D.B. Fuchs at UC Davis in September 2009. It is a brief survey of an area originated around 1995 by I. Gelfand and the speaker.

From left modules to algebras over an operad: application to combinatorial Hopf algebras

Muriel Livernet (2010)

Annales mathématiques Blaise Pascal

The purpose of this paper is two fold: we study the behaviour of the forgetful functor from 𝕊 -modules to graded vector spaces in the context of algebras over an operad and derive the construction of combinatorial Hopf algebras. As a byproduct we obtain freeness and cofreeness results for those Hopf algebras.Let 𝒪 denote the forgetful functor from 𝕊 -modules to graded vector spaces. Left modules over an operad 𝒫 are treated as 𝒫 -algebras in the category of 𝕊 -modules. We generalize the results obtained...

From Poisson algebras to Gerstenhaber algebras

Yvette Kosmann-Schwarzbach (1996)

Annales de l'institut Fourier

Constructing an even Poisson algebra from a Gerstenhaber algebra by means of an odd derivation of square 0 is shown to be possible in the category of Loday algebras (algebras with a non-skew-symmetric bracket, generalizing the Lie algebras, heretofore called Leibniz algebras in the literature). Such “derived brackets” give rise to Lie brackets on certain quotient spaces, and also on certain Abelian subalgebras. The construction of these derived brackets explains the origin of the Lie bracket on...

Full embeddings of almost split sequences over split-by-nilpotent extensions

Ibrahim Assem, Dan Zacharia (1999)

Colloquium Mathematicae

Let R be a split extension of an artin algebra A by a nilpotent bimodule A Q A , and let M be an indecomposable non-projective A-module. We show that the almost split sequences ending with M in mod A and mod R coincide if and only if H o m A ( Q , τ A M ) = 0 and M A Q = 0 .

Full matrix algebras with structure systems

Hisaaki Fujita (2003)

Colloquium Mathematicae

We study associative, basic n × n𝔸-full matrix algebras over a field, whose multiplications are determined by structure systems 𝔸, that is, n-tuples of n × n matrices with certain properties.

Currently displaying 1001 – 1020 of 3966