Displaying 101 – 120 of 677

Showing per page

Cluster categories for algebras of global dimension 2 and quivers with potential

Claire Amiot (2009)

Annales de l’institut Fourier

Let k be a field and A a finite-dimensional k -algebra of global dimension 2 . We construct a triangulated category 𝒞 A associated to A which, if  A is hereditary, is triangle equivalent to the cluster category of A . When 𝒞 A is Hom-finite, we prove that it is 2-CY and endowed with a canonical cluster-tilting object. This new class of categories contains some of the stable categories of modules over a preprojective algebra studied by Geiss-Leclerc-Schröer and by Buan-Iyama-Reiten-Scott. Our results also...

Coalgebraic Approach to the Loday Infinity Category, Stem Differential for 2 n -ary Graded and Homotopy Algebras

Mourad Ammar, Norbert Poncin (2010)

Annales de l’institut Fourier

We define a graded twisted-coassociative coproduct on the tensor algebra the desuspension space of a graded vector space V . The coderivations (resp. quadratic “degree 1” codifferentials, arbitrary odd codifferentials) of this coalgebra are 1-to-1 with sequences of multilinear maps on V (resp. graded Loday structures on V , sequences that we call Loday infinity structures on V ). We prove a minimal model theorem for Loday infinity algebras and observe that the Lod category contains the L category as...

Cohomologie de Hochschild des graphes de Kontsevich

Didier Arnal, Mohsen Masmoudi (2002)

Bulletin de la Société Mathématique de France

Nous calculons la cohomologie de Hochschild directement sur les graphes de Kontsevich. Celle-ci est localisée sur les graphes totalement antisymétriques ayant autant de pieds que de pattes. La considération de cette cohomologie permet de réinterpréter l’équation de formalité pour l’espace d .

Cohomologie locale de certains anneaux Auslander-Gorenstein.

Marie-Paule Malliavin (1992)

Publicacions Matemàtiques

We give axiomatic conditions in order to calculate the local cohomology of some idempotent kernel functors. These results lie in some new dimension introduced by T. Levasseur for Auslander-Gorenstein rings. Under some hypothesis, we generalize previous results.

Cohomologies bivariantes de type cyclique

Nikolay V. Solodov (2005)

Annales mathématiques Blaise Pascal

In the article we propose a construction of bivariant cohomology of a couple of chain complexes with periodicities. In this way we obtain definitions of bivariant dihedral and bivariant reflective cohomology of an algebra A . Bivariant cyclic and quaternionic cohomologies appear as particular cases of this construction. The case of 2 invertible in the ground ring is studied particulary.Dans cet article nous proposons une définition de la cohomologie bivariante pour une paire de complexes de chaînes...

Cohomology of some graded differential algebras

Wojciech Andrzejewski, Aleksiej Tralle (1994)

Fundamenta Mathematicae

We study cohomology algebras of graded differential algebras which are models for Hochschild homology of some classes of topological spaces (e.g. homogeneous spaces of compact Lie groups). Explicit formulae are obtained. Some applications to cyclic homology are given.

Cohomology ring of n-Lie algebras.

Mikolaj Rotkiewicz (2005)

Extracta Mathematicae

Natural graded Lie brackets on the space of cochains of n-Leibniz and n-Lie algebras are introduced. It turns out that these brackets agree under the natural embedding introduced by Gautheron. Moreover, n-Leibniz and n-Lie algebras turn to be canonical structures for these brackets in a similar way in which associative algebras (respectively, Lie algebras) are canonical structures for the Gerstenhaber bracket (respectively, Nijenhuis-Richardson bracket).

Combinatorial topology and the global dimension of algebras arising in combinatorics

Stuart Margolis, Franco Saliola, Benjamin Steinberg (2015)

Journal of the European Mathematical Society

In a highly influential paper, Bidigare, Hanlon and Rockmore showed that a number of popular Markov chains are random walks on the faces of a hyperplane arrangement. Their analysis of these Markov chains took advantage of the monoid structure on the set of faces. This theory was later extended by Brown to a larger class of monoids called left regular bands. In both cases, the representation theory of these monoids played a prominent role. In particular, it was used to compute the spectrum of the...

Currently displaying 101 – 120 of 677