Displaying 41 – 60 of 65

Showing per page

On generalized partial twisted smash products

Shuangjian Guo (2014)

Czechoslovak Mathematical Journal

We first introduce the notion of a right generalized partial smash product and explore some properties of such partial smash product, and consider some examples. Furthermore, we introduce the notion of a generalized partial twisted smash product and discuss a necessary condition under which such partial smash product forms a Hopf algebra. Based on these notions and properties, we construct a Morita context for partial coactions of a co-Frobenius Hopf algebra.

On the quantum groups and semigroups of maps between noncommutative spaces

Maysam Maysami Sadr (2017)

Czechoslovak Mathematical Journal

We define algebraic families of (all) morphisms which are purely algebraic analogs of quantum families of (all) maps introduced by P. M. Sołtan. Also, algebraic families of (all) isomorphisms are introduced. By using these notions we construct two classes of Hopf-algebras which may be interpreted as the quantum group of all maps from a finite space to a quantum group, and the quantum group of all automorphisms of a finite noncommutative (NC) space. As special cases three classes of NC objects are...

Quasitriangular Hom-Hopf algebras

Yuanyuan Chen, Zhongwei Wang, Liangyun Zhang (2014)

Colloquium Mathematicae

A twisted generalization of quasitriangular Hopf algebras called quasitriangular Hom-Hopf algebras is introduced. We characterize these algebras in terms of certain morphisms. We also give their equivalent description via a braided monoidal category ̃ ( H ) . Finally, we study the twisting structure of quasitriangular Hom-Hopf algebras by conjugation with Hom-2-cocycles.

Quasitriangular Hopf group algebras and braided monoidal categories

Shiyin Zhao, Jing Wang, Hui-Xiang Chen (2014)

Czechoslovak Mathematical Journal

Let π be a group, and H be a semi-Hopf π -algebra. We first show that the category H of left π -modules over H is a monoidal category with a suitably defined tensor product and each element α in π induces a strict monoidal functor F α from H to itself. Then we introduce the concept of quasitriangular semi-Hopf π -algebra, and show that a semi-Hopf π -algebra H is quasitriangular if and only if the category H is a braided monoidal category and F α is a strict braided monoidal functor for any α π . Finally,...

Remarks on Sekine quantum groups

Jialei Chen, Shilin Yang (2022)

Czechoslovak Mathematical Journal

We first describe the Sekine quantum groups 𝒜 k (the finite-dimensional Kac algebra of Kac-Paljutkin type) by generators and relations explicitly, which maybe convenient for further study. Then we classify all irreducible representations of 𝒜 k and describe their representation rings r ( 𝒜 k ) . Finally, we compute the the Frobenius-Perron dimension of the Casimir element and the Casimir number of r ( 𝒜 k ) .

Representations of étale Lie groupoids and modules over Hopf algebroids

Jure Kališnik (2011)

Czechoslovak Mathematical Journal

The classical Serre-Swan's theorem defines an equivalence between the category of vector bundles and the category of finitely generated projective modules over the algebra of continuous functions on some compact Hausdorff topological space. We extend these results to obtain a correspondence between the category of representations of an étale Lie groupoid and the category of modules over its Hopf algebroid that are of finite type and of constant rank. Both of these constructions are functorially...

Right coideal subalgebras of U q + ( 𝔰𝔬 2 n + 1 )

V. K. Kharchenko (2011)

Journal of the European Mathematical Society

We give a complete classification of right coideal subalgebras that contain all grouplike elements for the quantum group U q + ( 𝔰𝔬 2 n + 1 ) provided that q is not a root of 1. If q has a finite multiplicative order t > 4 ; this classification remains valid for homogeneous right coideal subalgebras of the Frobenius–Lusztig kernel u q + ( 𝔰𝔬 2 n + 1 ) . In particular, the total number of right coideal subalgebras that contain the coradical equals ( 2 n ) ! ! ; the order of the Weyl group defined by the root system of type B n .

Separable and Frobenius monoidal Hom-algebras

Yuanyuan Chen, Xiaoyan Zhou (2014)

Colloquium Mathematicae

As generalizations of separable and Frobenius algebras, separable and Frobenius monoidal Hom-algebras are introduced. They are all related to the Hom-Frobenius-separability equation (HFS-equation). We characterize these two Hom-algebraic structures by the same central element and different normalizing conditions, and the structure of these two types of monoidal Hom-algebras is studied. The Nakayama automorphisms of Frobenius monoidal Hom-algebras are considered.

Separable functors for the category of Doi Hom-Hopf modules

Shuangjian Guo, Xiaohui Zhang (2016)

Colloquium Mathematicae

Let ̃ ( k ) ( H ) A C be the category of Doi Hom-Hopf modules, ̃ ( k ) A be the category of A-Hom-modules, and F be the forgetful functor from ̃ ( k ) ( H ) A C to ̃ ( k ) A . The aim of this paper is to give a necessary and suffcient condition for F to be separable. This leads to a generalized notion of integral. Finally, applications of our results are given. In particular, we prove a Maschke type theorem for Doi Hom-Hopf modules.

Serre Theorem for involutory Hopf algebras

Gigel Militaru (2010)

Open Mathematics

We call a monoidal category C a Serre category if for any C, D ∈ C such that C ⊗ D is semisimple, C and D are semisimple objects in C. Let H be an involutory Hopf algebra, M, N two H-(co)modules such that M ⊗ N is (co)semisimple as a H-(co)module. If N (resp. M) is a finitely generated projective k-module with invertible Hattory-Stallings rank in k then M (resp. N) is (co)semisimple as a H-(co)module. In particular, the full subcategory of all finite dimensional modules, comodules or Yetter-Drinfel’d...

The affineness criterion for quantum Hom-Yetter-Drinfel'd modules

Shuangjian Guo, Shengxiang Wang (2016)

Colloquium Mathematicae

Quantum integrals associated to quantum Hom-Yetter-Drinfel’d modules are defined, and the affineness criterion for quantum Hom-Yetter-Drinfel’d modules is proved in the following form. Let (H,α) be a monoidal Hom-Hopf algebra, (A,β) an (H,α)-Hom-bicomodule algebra and B = A c o H . Under the assumption that there exists a total quantum integral γ: H → Hom(H,A) and the canonical map β : A B A A H , a B b S - 1 ( b [ 1 ] ) α ( b [ 0 ] [ - 1 ] ) β - 1 ( a ) β ( b [ 0 ] [ 0 ] ) , is surjective, we prove that the induction functor A B - : ̃ ( k ) B A H is an equivalence of categories.

The bicrossed products of H 4 and H 8

Daowei Lu, Yan Ning, Dingguo Wang (2020)

Czechoslovak Mathematical Journal

Let H 4 and H 8 be the Sweedler’s and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through H 8 and H 4 (equivalently, any bicrossed product between the Hopf algebras H 8 and H 4 ) must be isomorphic to one of the following four Hopf algebras: H 8 H 4 , H 32 , 1 , H 32 , 2 , H 32 , 3 . The set of all matched pairs ( H 8 , H 4 , , ) is explicitly described, and then the associated bicrossed product is given by generators and relations.

The duality theorem for twisted smash products of Hopf algebras and its applications

Zhongwei Wang, Liangyun Zhang (2015)

Colloquium Mathematicae

Let A T H denote the twisted smash product of an arbitrary algebra A and a Hopf algebra H over a field. We present an analogue of the celebrated Blattner-Montgomery duality theorem for A T H , and as an application we establish the relationship between the homological dimensions of A T H and A if H and its dual H* are both semisimple.

The fundamental theorem and Maschke's theorem in the category of relative Hom-Hopf modules

Yuanyuan Chen, Zhongwei Wang, Liangyun Zhang (2016)

Colloquium Mathematicae

We introduce the concept of relative Hom-Hopf modules and investigate their structure in a monoidal category ̃ ( k ) . More particularly, the fundamental theorem for relative Hom-Hopf modules is proved under the assumption that the Hom-comodule algebra is cleft. Moreover, Maschke’s theorem for relative Hom-Hopf modules is established when there is a multiplicative total Hom-integral.

The geometric reductivity of the quantum group S L q ( 2 )

Michał Kępa, Andrzej Tyc (2011)

Colloquium Mathematicae

We introduce the concept of geometrically reductive quantum group which is a generalization of the Mumford definition of geometrically reductive algebraic group. We prove that if G is a geometrically reductive quantum group and acts rationally on a commutative and finitely generated algebra A, then the algebra of invariants A G is finitely generated. We also prove that in characteristic 0 a quantum group G is geometrically reductive if and only if every rational G-module is semisimple, and that in...

The structures of Hopf * -algebra on Radford algebras

Hassan Suleman Esmael Mohammed, Hui-Xiang Chen (2019)

Czechoslovak Mathematical Journal

We investigate the structures of Hopf * -algebra on the Radford algebras over . All the * -structures on H are explicitly given. Moreover, these Hopf * -algebra structures are classified up to equivalence.

Currently displaying 41 – 60 of 65