Displaying 341 – 360 of 2671

Showing per page

Cohomologie et K-théorie équivariantes des variétés de Bott-Samelson et des variétés de drapeaux

Matthieu Willems (2004)

Bulletin de la Société Mathématique de France

L’objet de cet article est de calculer la cohomologie et la K-théorie équivariantes des variétés de Bott-Samelson (théorèmes 3.3 et 4.3) et d’en déduire des résultats sur les variétés de drapeaux des groupes de Kac-Moody. Dans la section 3, on retrouve la formule de restriction aux points fixes de la base { ξ ^ w } w W de H T * ( G / B ) (théorème 3.9) prouvée par Sara Billey dans [4]. Dans la section 4, on donne l’expression explicite de la restriction aux points fixes de la base { ψ ^ w } w W de K T ( G / B ) définie par Kostant et Kumar dans...

Cohomology of G / P for classical complex Lie supergroups G and characters of some atypical G -modules

Ivan Penkov, Vera Serganova (1989)

Annales de l'institut Fourier

We compute the unique nonzero cohomology group of a generic G 0 - linearized locally free 𝒪 -module, where G 0 is the identity component of a complex classical Lie supergroup G and P G 0 is an arbitrary parabolic subsupergroup. In particular we prove that for G ( m ) , S ( m ) this cohomology group is an irreducible G 0 -module. As an application we generalize the character formula of typical irreducible G 0 -modules to a natural class of atypical modules arising in this way.

Cohomology of Hom-Lie superalgebras and q -deformed Witt superalgebra

Faouzi Ammar, Abdenacer Makhlouf, Nejib Saadaoui (2013)

Czechoslovak Mathematical Journal

Hom-Lie algebra (superalgebra) structure appeared naturally in q -deformations, based on σ -derivations of Witt and Virasoro algebras (superalgebras). They are a twisted version of Lie algebras (superalgebras), obtained by deforming the Jacobi identity by a homomorphism. In this paper, we discuss the concept of α k -derivation, a representation theory, and provide a cohomology complex of Hom-Lie superalgebras. Moreover, we study central extensions. As application, we compute derivations and the second...

Cohomology of tensor product of quantum planes

Paolo Papi (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider the Lie algebra of inner derivations of the n -fold tensor product of Manin quantum planes and compute its second cohomology group with trivial coefficients.

Cohomology ring of n-Lie algebras.

Mikolaj Rotkiewicz (2005)

Extracta Mathematicae

Natural graded Lie brackets on the space of cochains of n-Leibniz and n-Lie algebras are introduced. It turns out that these brackets agree under the natural embedding introduced by Gautheron. Moreover, n-Leibniz and n-Lie algebras turn to be canonical structures for these brackets in a similar way in which associative algebras (respectively, Lie algebras) are canonical structures for the Gerstenhaber bracket (respectively, Nijenhuis-Richardson bracket).

Currently displaying 341 – 360 of 2671