Dérivations et déformations de certaines algèbres de Lie infinies classiques
Let be an arbitrary commutative ring with identity, the general linear Lie algebra over , the diagonal subalgebra of . In case 2 is a unit of , all subalgebras of containing are determined and their derivations are given. In case 2 is not a unit partial results are given.
We establish that all derivations on a semisimple Jordan-Banach algebra are automatically continuous. By showing that "almost all" primitive ideals in the algebra are invariant under a given derivation, the general case is reduced to that of primitive Jordan-Banach algebras.
Cette note évoque les premiers travaux de J.-L. Koszul (1947-1950) en les replaçant dans leur cadre historique et retrace en particulier le chemin qui a conduit Koszul à la résolution qui porte son nom.
La première partie de cet article est une adaptation au cadre des super groupes d’un théorème dû à Cartier qui assure que les groupes formels sont lisses en caractéristique zéro. La seconde partie donne une description des super groupes de Lie dits “vraiment classiques” comme groupes d’automorphismes de super algèbres semi-simples associatives à involution, selon une méthode de Weil.