Displaying 481 – 500 of 2671

Showing per page

Derivations of the subalgebras intermediate the general linear Lie algebra and the diagonal subalgebra over commutative rings

Deng Yin Wang, Xian Wang (2008)

Archivum Mathematicum

Let R be an arbitrary commutative ring with identity, gl ( n , R ) the general linear Lie algebra over R , d ( n , R ) the diagonal subalgebra of gl ( n , R ) . In case 2 is a unit of R , all subalgebras of gl ( n , R ) containing d ( n , R ) are determined and their derivations are given. In case 2 is not a unit partial results are given.

Derivations on Jordan-Banach algebras

A. Villena (1996)

Studia Mathematica

We establish that all derivations on a semisimple Jordan-Banach algebra are automatically continuous. By showing that "almost all" primitive ideals in the algebra are invariant under a given derivation, the general case is reduced to that of primitive Jordan-Banach algebras.

Des espaces homogènes à la résolution de Koszul

André Haefliger (1987)

Annales de l'institut Fourier

Cette note évoque les premiers travaux de J.-L. Koszul (1947-1950) en les replaçant dans leur cadre historique et retrace en particulier le chemin qui a conduit Koszul à la résolution qui porte son nom.

Description de certains super groupes classiques

Caroline Gruson (1994)

Annales de l'institut Fourier

La première partie de cet article est une adaptation au cadre des super groupes d’un théorème dû à Cartier qui assure que les groupes formels sont lisses en caractéristique zéro. La seconde partie donne une description des super groupes de Lie dits “vraiment classiques” comme groupes d’automorphismes de super algèbres semi-simples associatives à involution, selon une méthode de Weil.

Currently displaying 481 – 500 of 2671