On a connection between nilpotent groups and Lie rings.
Page 1 Next
Jaikin-Zapirain, A., Khukhro, E.I. (2000)
Sibirskij Matematicheskij Zhurnal
José María Ancochea Bermúdez, Otto Rutwig Campoamor (2002)
Revista Matemática Complutense
In Gilg (2000, 2001) the author introduces the notion of filiform Lie superalgebras, generalizing the filiform Lie algebras studied by Vergne in the sixties. In these appers, the superalgebras whose even part is isomorphic to the model filiform Lie algebra Ln are studied and classified in low dimensions. Here we consider a class of superalgebras whose even part is the filiform, naturally graded Lie algebra Qn, which only exists in even dimension as a consequence of the centralizer property. Certain...
Juri Bahturin (1982)
Banach Center Publications
Lyakhovskiĭ, V.D. (2004)
Zapiski Nauchnykh Seminarov POMI
Galitski, L.Yu., Timashev, D.A. (1999)
Journal of Lie Theory
Michael Wüstner (1998)
Colloquium Mathematicae
Barbari, P., Kobotis, A. (1998)
Balkan Journal of Geometry and its Applications (BJGA)
Peyman Niroomand (2011)
Open Mathematics
Let L be an n-dimensional non-abelian nilpotent Lie algebra and where M(L) is the Schur multiplier of L. In [Niroomand P., Russo F., A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra (in press)] it has been shown that s(L) ≥ 0 and the structure of all nilpotent Lie algebras has been determined when s(L) = 0. In the present paper, we will characterize all finite dimensional nilpotent Lie algebras with s(L) = 1; 2.
Campoamor Stursberg, O.R. (2002)
Acta Mathematica Universitatis Comenianae. New Series
Barbari, P., Kobotis, A. (2003)
International Journal of Mathematics and Mathematical Sciences
Khukhro, E.I. (2001)
Sibirskij Matematicheskij Zhurnal
Paolo de Bartolomeis, Adriano Tomassini (2006)
Annales de l’institut Fourier
We give an example of a compact 6-dimensional non-Kähler symplectic manifold that satisfies the Hard Lefschetz Condition. Moreover, it is showed that is a special generalized Calabi-Yau manifold.
Ayupov, Sh.A., Omirov, B.A. (2001)
Sibirskij Matematicheskij Zhurnal
Niels Vigand Pedersen (1994)
Aequationes mathematicae
Ronald S. Irving, Lance W. Small (1980)
Mathematische Zeitschrift
Ch. Deninger, W. Singhof (1988)
Bulletin de la Société Mathématique de France
Helmut Strade, Rolf Farnsteiner (1988)
Mathematische Annalen
Tirao, Paulo (2002)
Journal of Lie Theory
Enrico Boasso (1999)
Studia Mathematica
For a complex nilpotent finite-dimensional Lie algebra of matrices, and a Jordan-Hölder basis of it, we prove a spectral radius formula which extends a well-known result for commuting matrices.
Yankosky, Bill (2003)
Journal of Lie Theory
Page 1 Next