Displaying 321 – 340 of 456

Showing per page

Quantum SU(2) and the Baum-Connes conjecture

Christian Voigt (2012)

Banach Center Publications

We review the formulation and proof of the Baum-Connes conjecture for the dual of the quantum group S U q ( 2 ) of Woronowicz. As an illustration of this result we determine the K-groups of quantum automorphism groups of simple matrix algebras.

Quasigroup automorphisms and symmetric group characters

Brent Kerby, Jonathan D. H. Smith (2010)

Commentationes Mathematicae Universitatis Carolinae

The automorphisms of a quasigroup or Latin square are permutations of the set of entries of the square, and thus belong to conjugacy classes in symmetric groups. These conjugacy classes may be recognized as being annihilated by symmetric group class functions that belong to a λ -ideal of the special λ -ring of symmetric group class functions.

Quiver varieties and the character ring of general linear groups over finite fields

Emmanuel Letellier (2013)

Journal of the European Mathematical Society

Given a tuple ( 𝒳 1 , ... , 𝒳 k ) of irreducible characters of G L n ( F q ) we define a star-shaped quiver Γ together with a dimension vector v . Assume that ( 𝒳 1 , ... , 𝒳 k ) is generic. Our first result is a formula which expresses the multiplicity of the trivial character in the tensor product 𝒳 1 𝒳 k as the trace of the action of some Weyl group on the intersection cohomology of some (non-affine) quiver varieties associated to ( Γ , v ) . The existence of such a quiver variety is subject to some condition. Assuming that this condition is satisfied, we...

Recollement of colimit categories and its applications

Ju Huang, QingHua Chen, Chunhuan Lai (2020)

Czechoslovak Mathematical Journal

We give an explicit recollement for a cocomplete abelian category and its colimit category. We obtain some applications on Leavitt path algebras, derived equivalences and K -groups.

Remarks on flat and differential K -theory

Man-Ho Ho (2014)

Annales mathématiques Blaise Pascal

In this note we prove some results in flat and differential K -theory. The first one is a proof of the compatibility of the differential topological index and the flat topological index by a direct computation. The second one is the explicit isomorphisms between Bunke-Schick differential K -theory and Freed-Lott differential K -theory.

Remarks on Yu’s ‘property A’ for discrete metric spaces and groups

Jean-Louis Tu (2001)

Bulletin de la Société Mathématique de France

Guoliang Yu has introduced a property on discrete metric spaces and groups, which is a weak form of amenability and which has important applications to the Novikov conjecture and the coarse Baum–Connes conjecture. The aim of the present paper is to prove that property in particular examples, like spaces with subexponential growth, amalgamated free products of discrete groups having property A and HNN extensions of discrete groups having property A.

Remarques sur les différentielles des polylogarithmes uniformes

Jean-Louis Cathelineau (1996)

Annales de l'institut Fourier

On étudie des équations fonctionnelles pour les différentielles des polylogarithmes uniformes. Un des ingrédients est l’analogue infinitésimal d’un complexe introduit par Goncharov. On obtient en particulier une équation fonctionnelle à 22 termes pour la différentielle du trilogarithme.

Representations of étale Lie groupoids and modules over Hopf algebroids

Jure Kališnik (2011)

Czechoslovak Mathematical Journal

The classical Serre-Swan's theorem defines an equivalence between the category of vector bundles and the category of finitely generated projective modules over the algebra of continuous functions on some compact Hausdorff topological space. We extend these results to obtain a correspondence between the category of representations of an étale Lie groupoid and the category of modules over its Hopf algebroid that are of finite type and of constant rank. Both of these constructions are functorially...

Currently displaying 321 – 340 of 456