Kleinian groups and the rank problem.
We describe finitely generated groups universally equivalent (with constants from in the language) to a given torsion-free relatively hyperbolic group with free abelian parabolics. It turns out that, as in the free group case, the group embeds into the Lyndon’s completion of the group , or, equivalently, embeds into a group obtained from by finitely many extensions of centralizers. Conversely, every subgroup of containing is universally equivalent to . Since finitely generated...
Let and for and when for , we obtain an effective archimedean counting result for a discrete orbit of in a homogeneous space where is the trivial group, a symmetric subgroup or a horospherical subgroup. More precisely, we show that for any effectively well-rounded family of compact subsets, there exists such that for an explicit measure on which depends on . We also apply the affine sieve and describe the distribution of almost primes on orbits of in arithmetic settings....
We show that superreflexivity can be characterized in terms of bilipschitz embeddability of word hyperbolic groups.We compare characterizations of superrefiexivity in terms of diamond graphs and binary trees.We show that there exist sequences of series-parallel graphs of increasing topological complexitywhich admit uniformly bilipschitz embeddings into a Hilbert space, and thus do not characterize superrefiexivity.
We summarize here the main ideas and results of our papers [28], [14], as presented at the 2013 CIRM Meeting on Discrete curvature and we augment these by bringing up an application of one of our main results, namely to solving a problem regarding cube complexes.
In this paper we prove that random d-regular graphs with d ≥ 3 have traffic congestion of the order O(n logd−13 n) where n is the number of nodes and geodesic routing is used. We also show that these graphs are not asymptotically δ-hyperbolic for any non-negative δ almost surely as n → ∞.
We prove that the semistability growth of hyperbolic groups is linear, which implies that hyperbolic groups which are sci (simply connected at infinity) have linear sci growth. Based on the linearity of the end-depth of finitely presented groups we show that the linear sci is preserved under amalgamated products over finitely generated one-ended groups. Eventually one proves that most non-uniform lattices have linear sci.
In this article we study the Ahlfors regular conformal gauge of a compact metric space , and its conformal dimension . Using a sequence of finite coverings of , we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute using the critical exponent associated to the combinatorial modulus.
Ozawa showed in [21] that for any i.c.c. hyperbolic group, the associated group factor is solid. Developing a new approach that combines some methods of Peterson [29], Ozawa and Popa [27, 28], and Ozawa [25], we strengthen this result by showing that is strongly solid. Using our methods in cooperation with a cocycle superrigidity result of Ioana [12], we show that profinite actions of lattices in , , are virtually -superrigid.
We explore the interior geometry of the CAT(0) spaces , constructed by Croke and Kleiner [Topology 39 (2000)]. In particular, we describe a diffraction effect experienced by the family of geodesic rays that emanate from a basepoint and pass through a certain singular point called a triple point, and we describe the shadow this family casts on the boundary. This diffraction effect is codified in the Transformation Rules stated in Section 3 of this paper. The Transformation Rules have various applications....