Displaying 101 – 120 of 124

Showing per page

Convex lines in median groups

Milan Kolibiar (1992)

Archivum Mathematicum

There is proved that a convex maximal line in a median group G , containing 0, is a direct factor of G .

Co-rank and Betti number of a group

Irina Gelbukh (2015)

Czechoslovak Mathematical Journal

For a finitely generated group, we study the relations between its rank, the maximal rank of its free quotient, called co-rank (inner rank, cut number), and the maximal rank of its free abelian quotient, called the Betti number. We show that any combination of the group's rank, co-rank, and Betti number within obvious constraints is realized for some finitely presented group (for Betti number equal to rank, the group can be chosen torsion-free). In addition, we show that the Betti number is additive...

Counting fixed points of a finitely generated subgroup of Aff [C].

F. Loray, M. Van Der Put, F. Recher (2004)

Publicacions Matemàtiques

Given a finitely generated subgroup G of the group of affine transformations acting on the complex line C, we are interested in the quotient Fix( G)/G. The purpose of this note is to establish when this quotient is finite and in this case its cardinality. We give an application to the qualitative study of polynomial planar vector fields at a neighborhood of a nilpotent singular point.

Coxeter group actions on the complement of hyperplanes and special involutions

Giovanni Felder, A. Veselov (2005)

Journal of the European Mathematical Society

We consider both standard and twisted actions of a (real) Coxeter group G on the complement G to the complexified reflection hyperplanes by combining the reflections with complex conjugation. We introduce a natural geometric class of special involutions in G and give explicit formulae which describe both actions on the total cohomology H * ( G , 𝒞 ) in terms of these involutions. As a corollary we prove that the corresponding twisted representation is regular only for the symmetric group S n , the Weyl groups...

Coxeter polynomials of Salem trees

Charalampos A. Evripidou (2015)

Colloquium Mathematicae

We compute the Coxeter polynomial of a family of Salem trees, and also the limit of the spectral radii of their Coxeter transformations as the number of their vertices tends to infinity. We also prove that if z is a root of multiplicities m , . . . , m k for the Coxeter polynomials of the trees , . . . , k respectively, then z is a root for the Coxeter polynomial of their join, of multiplicity at least m i n m - m , . . . , m - m k where m = m + + m k .

Critical constants for recurrence of random walks on G -spaces

Anna Erschler (2005)

Annales de l’institut Fourier

We introduce the notion of a critical constant c r t for recurrence of random walks on G -spaces. For a subgroup H of a finitely generated group G the critical constant is an asymptotic invariant of the quotient G -space G / H . We show that for any infinite G -space c r t 1 / 2 . We say that G / H is very small if c r t < 1 . For a normal subgroup H the quotient space G / H is very small if and only if it is finite. However, we give examples of infinite very small G -spaces. We show also that critical constants for recurrence can be used...

Croissance uniforme dans les groupes hyperboliques

Malik Koubi (1998)

Annales de l'institut Fourier

On montre qu’un groupe hyperbolique G non élémentaire est à croissance uniformément exponentielle, c’est-à-dire qu’il existe une constante c G strictement plus grande que 1, ne dépendant que du groupe G , telle que le taux de croissance exponentiel de G relatif à n’importe quel système générateur est plus grand que c G . On redémontre ce faisant qu’un groupe hyperbolique n’a qu’un nombre fini de classes de conjugaison de sous-groupes finis.

Currently displaying 101 – 120 of 124