Displaying 701 – 720 of 1250

Showing per page

Quelques questions d’approximation faible pour les tores algébriques

Jean-Louis Colliot-Thélène, Venapally Suresh (2007)

Annales de l’institut Fourier

Soient K un corps global, T un K -tore, S un ensemble fini de places de K . On note K v le complété de K en v S . Soit T ( K ) , resp. T ( K v ) , le groupe des points K -rationnels, resp. K v -rationnels, de T . Notons T ( O v ) T ( K v ) le sous-groupe compact maximal. Nous montrons que pour T et S convenables l’application T ( K ) v S T ( K v ) / T ( O v ) induite par l’application diagonale n’est pas surjective. Cela implique que pour v convenable le groupe T ( O v ) ne couvre pas forcément toutes les classes de R -équivalence de T ( K v ) . Lorsque K est un corps de fonctions d’une variable...

Quiver varieties and the character ring of general linear groups over finite fields

Emmanuel Letellier (2013)

Journal of the European Mathematical Society

Given a tuple ( 𝒳 1 , ... , 𝒳 k ) of irreducible characters of G L n ( F q ) we define a star-shaped quiver Γ together with a dimension vector v . Assume that ( 𝒳 1 , ... , 𝒳 k ) is generic. Our first result is a formula which expresses the multiplicity of the trivial character in the tensor product 𝒳 1 𝒳 k as the trace of the action of some Weyl group on the intersection cohomology of some (non-affine) quiver varieties associated to ( Γ , v ) . The existence of such a quiver variety is subject to some condition. Assuming that this condition is satisfied, we...

Quiver varieties and Weyl group actions

George Lusztig (2000)

Annales de l'institut Fourier

The cohomology of Nakajima’s varieties is known to carry a natural Weyl group action. Here this fact is established using the method of intersection cohomology, in analogy with the definition of Springer’s representations.

Quotients compacts des groupes ultramétriques de rang un

Fanny Kassel (2010)

Annales de l’institut Fourier

Soit G l’ensemble des points d’un groupe algébrique semi-simple connexe de rang relatif un sur un corps local ultramétrique. Nous décrivons tous les sous-groupes discrets de type fini sans torsion de  G × G qui agissent proprement et cocompactement sur  G par multiplication à gauche et à droite. Nous montrons qu’après une petite déformation dans  G × G un tel sous-groupe agit encore librement, proprement discontinûment et cocompactement sur  G .

Radical d'une algèbre symétrique à gauche

Jacques Helmstetter (1979)

Annales de l'institut Fourier

L’étude d’une algèbre symétrique à gauche (de dimension finie sur C ) est liée à celle d’un groupe de transformations affines opérant avec trajectoire ouverte et groupe d’isotropie discret sur cette trajectoire. Son radical est défini grâce aux translations conservant cette trajectoire; l’algèbre est nilpotente si ce groupe opère de façon simplement transitive (les multiplications à droite sont alors nilpotentes). Le radical est le plus grand idéal à gauche nilpotent.

Rational fixed points for linear group actions

Pietro Corvaja (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We prove a version of the Hilbert Irreducibility Theorem for linear algebraic groups. Given a connected linear algebraic group G , an affine variety V and a finite map π : V G , all defined over a finitely generated field κ of characteristic zero, Theorem 1.6 provides the natural necessary and sufficient condition under which the set π ( V ( κ ) ) contains a Zariski dense sub-semigroup Γ G ( κ ) ; namely, there must exist an unramified covering p : G ˜ G and a map θ : G ˜ V such that π θ = p . In the case κ = , G = 𝔾 a is the additive group, we reobtain the...

Rational points and Coxeter group actions on the cohomology of toric varieties

Gustav I. Lehrer (2008)

Annales de l’institut Fourier

We derive a simple formula for the action of a finite crystallographic Coxeter group on the cohomology of its associated complex toric variety, using the method of counting rational points over finite fields, and the Hodge structure of the cohomology. Various applications are given, including the determination of the graded multiplicity of the reflection representation.

Currently displaying 701 – 720 of 1250