A Remark on Discontinuous Translation Invariant Functionals on L... (G) for Certain Compact Groups G.
Recently, E.Feigin introduced a very interesting contraction of a semisimple Lie algebra (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of . For instance, the algebras of invariants of both adjoint and coadjoint representations of are free, and also the enveloping algebra of is a free module over its centre.
We prove a restriction theorem for the class-1 representations of the Heisenberg motion group. This is done using an improvement of the restriction theorem for the special Hermite projection operators proved in [13]. We also prove a restriction theorem for the Heisenberg group.
We describe a new approach to the Weil representation attached to a symplectic group over a finite or a local field. We dissect the representation into small pieces, study how they work, and put them back together. This way, we obtain a reversed construction of that of T. Thomas, skipping most of the literature on which the latter is based.
We study germs of Lie algebras generated by two commuting vector fields in manifolds that are maximal in the sense of Palais (those which do not present any evident obstruction to be the local model of an action of ). We study three particular pairs of homogeneous quadratic commuting vector fields (in , and ) and study the maximal Lie algebras generated by commuting vector fields whose 2-jets at the origin are the given homogeneous ones. In the first case we prove that the quadratic algebra...