On approximation of locally compact groups by finite algebraic systems.
This is a small survey paper about connections between the arithmetic and geometric properties in the case of arithmetic Fuchsian groups.
The second author had previously obtained explicit generating functions for moments of characteristic polynomials of permutation matrices ( points). In this paper, we generalize many aspects of this situation. We introduce random shifts of the eigenvalues of the permutation matrices, in two different ways: independently or not for each subset of eigenvalues associated to the same cycle. We also consider vastly more general functions than the characteristic polynomial of a permutation matrix, by...
In this paper the absolute convergence of the group Fourier transform for the Heisenberg group is investigated. It is proved that the Fourier transform of functions belonging to certain Besov spaces is absolutely convergent. The function spaces are defined in terms of the heat semigroup of the full Laplacian of the Heisenberg group.
We show how the measure theory of regular compacted-Borel measures defined on the -ring of compacted-Borel subsets of a weighted locally compact group provides a compatible framework for defining the corresponding Beurling measure algebra , thus filling a gap in the literature.
Let be a complex reductive Lie algebra and be any reductive in subalgebra. We call a -module bounded if the -multiplicities of are uniformly bounded. In this paper we initiate a general study of simple bounded -modules. We prove a strong necessary condition for a subalgebra to be bounded (Corollary 4.6), i.e. to admit an infinite-dimensional simple bounded -module, and then establish a sufficient condition for a subalgebra to be bounded (Theorem 5.1). As a result we are able to...