A generalized coherent state approach of the quantum dynamics for suitable time-dependent hamiltonians
We introduce a new method for obtaining heat kernel on-diagonal lower bounds on non- compact Lie groups and on infinite discrete groups. By using this method, we are able to recover the previously known results for unimodular amenable Lie groups as well as for certain classes of discrete groups including the polycyclic groups, and to give them a geometric interpretation. We also obtain new results for some discrete groups which admit the structure of a semi-direct product or of a wreath product....
This paper is part of a general program that was originally designed to study the Heat diffusion kernel on Lie groups.
We establish a Künneth formula for some chain complexes in the categories of Fréchet and Banach spaces. We consider a complex of Banach spaces and continuous boundary maps dₙ with closed ranges and prove that Hⁿ(’) ≅ Hₙ()’, where Hₙ()’ is the dual space of the homology group of and Hⁿ(’) is the cohomology group of the dual complex ’. A Künneth formula for chain complexes of nuclear Fréchet spaces and continuous boundary maps with closed ranges is also obtained. This enables us to describe explicitly...