A new criterion for local non-solvability of homogeneous left invariant differential operators on nilpotent Lie groups.
D. Müller (1991)
Journal für die reine und angewandte Mathematik
I., Rallis, S. Piatetski-Shapiro (1988)
Journal für die reine und angewandte Mathematik
Jacek Dziubański, Andrzej Hulanicki, Joe Jenkins (1995)
Colloquium Mathematicae
The aim of this paper is to demonstrate how a fairly simple nilpotent Lie algebra can be used as a tool to study differential operators on with polynomial coefficients, especially when the property studied depends only on the degree of the polynomials involved and/or the number of variables.
Yasuo Morita (1981/1982)
Groupe de travail d'analyse ultramétrique
H. Jacquet, J.A. Shalika (1976)
Inventiones mathematicae
Neeb, Karl-Hermann (1996)
Journal of Lie Theory
Mark Roberts (1986)
Mathematische Annalen
David H. Collingwood (1985)
Mathematische Zeitschrift
Breckner, Brigitte E. (2002)
Mathematica Pannonica
Breckner, Brigitte E. (2005)
Mathematica Pannonica
M.S. RAGHUNATHAN (1967/1968)
Inventiones mathematicae
Magdy Assern (1996)
Manuscripta mathematica
Grassberger, Johannes, Hörmann, Günther (2001)
Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]
Jacek Dziubański (1998)
Colloquium Mathematicae
Claudio Nebbia (1989)
Monatshefte für Mathematik
Nelo, D. Allan (1973)
Revista colombiana de matematicas
Chu, Hsin (1993)
Portugaliae mathematica
Lapid, Erez M. (1998)
Documenta Mathematica
Wolf, Joseph A., Zierau, Roger (2003)
Journal of Lie Theory
Michael Harris, Anthony Scholl (2001)
Journal of the European Mathematical Society
We extend Prasad’s results on the existence of trilinear forms on representations of of a local field, by permitting one or more of the representations to be reducible principal series, with infinite-dimensional irreducible quotient. We apply this in a global setting to compute (unconditionally) the dimensions of the subspaces of motivic cohomology of the product of two modular curves constructed by Beilinson.