A Paley-Wiener theorem for nilpotent Lie groups. (Un théorème de Paley-Wiener pour les groupes de Lie nilpotents.)
It is an interesting open problem to establish Paley-Wiener theorems for general nilpotent Lie groups. The aim of this paper is to prove one such theorem for step two nilpotent Lie groups which is analogous to the Paley-Wiener theorem for the Heisenberg group proved in [4].
Let N be an H-type group and consider its one-dimensional solvable extension NA, equipped with a suitable left-invariant Riemannian metric. We prove a Paley-Wiener theorem for nonradial functions on NA supported in a set whose boundary is a horocycle of the form Na, a ∈ A.
Recently, E.Feigin introduced a very interesting contraction of a semisimple Lie algebra (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of . For instance, the algebras of invariants of both adjoint and coadjoint representations of are free, and also the enveloping algebra of is a free module over its centre.
We prove a restriction theorem for the class-1 representations of the Heisenberg motion group. This is done using an improvement of the restriction theorem for the special Hermite projection operators proved in [13]. We also prove a restriction theorem for the Heisenberg group.
We describe a new approach to the Weil representation attached to a symplectic group over a finite or a local field. We dissect the representation into small pieces, study how they work, and put them back together. This way, we obtain a reversed construction of that of T. Thomas, skipping most of the literature on which the latter is based.