Displaying 101 – 120 of 211

Showing per page

The Poisson boundary of random rational affinities

Sara Brofferio (2006)

Annales de l’institut Fourier

We prove that in order to describe the Poisson boundary of rational affinities, it is necessary and sufficient to consider the action on real and all p -adic fileds.

The proportionality constant for the simplicial volume of locally symmetric spaces

Michelle Bucher-Karlsson (2008)

Colloquium Mathematicae

We follow ideas going back to Gromov's seminal article [Publ. Math. IHES 56 (1982)] to show that the proportionality constant relating the simplicial volume and the volume of a closed, oriented, locally symmetric space M = Γ∖G/K of noncompact type is equal to the Gromov norm of the volume form in the continuous cohomology of G. The proportionality constant thus becomes easier to compute. Furthermore, this method also gives a simple proof of the proportionality principle for arbitrary manifolds.

The quasi-hereditary algebra associated to the radical bimodule over a hereditary algebra

Lutz Hille, Dieter Vossieck (2003)

Colloquium Mathematicae

Let Γ be a finite-dimensional hereditary basic algebra. We consider the radical rad Γ as a Γ-bimodule. It is known that there exists a quasi-hereditary algebra 𝓐 such that the category of matrices over rad Γ is equivalent to the category of Δ-filtered 𝓐-modules ℱ(𝓐,Δ). In this note we determine the quasi-hereditary algebra 𝓐 and prove certain properties of its module category.

The rectifiable distance in the unitary Fredholm group

Esteban Andruchow, Gabriel Larotonda (2010)

Studia Mathematica

Let U c ( ) = u: u unitary and u-1 compact stand for the unitary Fredholm group. We prove the following convexity result. Denote by d the rectifiable distance induced by the Finsler metric given by the operator norm in U c ( ) . If u , u , u U c ( ) and the geodesic β joining u₀ and u₁ in U c ( ) satisfy d ( u , β ) < π / 2 , then the map f ( s ) = d ( u , β ( s ) ) is convex for s ∈ [0,1]. In particular, the convexity radius of the geodesic balls in U c ( ) is π/4. The same convexity property holds in the p-Schatten unitary groups U p ( ) = u: u unitary and u-1 in the p-Schatten class...

Currently displaying 101 – 120 of 211