Displaying 1501 – 1520 of 2342

Showing per page

Paramétrisation du dual d'une algèbre de Lie nilpotente

Pierre Bonnet (1988)

Annales de l'institut Fourier

Pour tout groupe de Lie nilpotent réel G connexe et simplement connexe, on construit une stratification du dual de l’algèbre de Lie, et on paramètre chaque strate au moyen d’un triplet ( λ , q , p ) de fonctions rationnelles à valeurs vectorielles; les valeurs de λ caractérisent les orbites de la strate et pour chacune de ces orbites, le couple ( q , p ) constitue une carte de Darboux.

Parity sheaves, moment graphs and the p -smooth locus of Schubert varieties

Peter Fiebig, Geordie Williamson (2014)

Annales de l’institut Fourier

We show that the Braden-MacPherson algorithm computes the stalks of parity sheaves. As a consequence we deduce that the Braden-MacPherson algorithm may be used to calculate the characters of tilting modules for algebraic groups and show that the p -smooth locus of a (Kac-Moody) Schubert variety coincides with the rationally smooth locus, if the underlying Bruhat graph satisfies a GKM-condition.

Pluriharmonic functions on symmetric tube domains with BMO boundary values

Ewa Damek, Jacek Dziubański, Andrzej Hulanicki, Jose L. Torrea (2002)

Colloquium Mathematicae

Let 𝓓 be a symmetric Siegel domain of tube type and S be a solvable Lie group acting simply transitively on 𝓓. Assume that L is a real S-invariant second order operator that satisfies Hörmander's condition and annihilates holomorphic functions. Let H be the Laplace-Beltrami operator for the product of upper half planes imbedded in 𝓓. We prove that if F is an L-Poisson integral of a BMO function and HF = 0 then F is pluriharmonic. Some other related results are also considered.

Pointwise estimates for densities of stable semigroups of measures

Paweł Głowacki, Waldemar Hebisch (1993)

Studia Mathematica

Let μ t be a symmetric α-stable semigroup of probability measures on a homogeneous group N, where 0 < α < 2. Assume that μ t are absolutely continuous with respect to Haar measure and denote by h t the corresponding densities. We show that the estimate h t ( x ) t Ω ( x / | x | ) | x | - n - α , x≠0, holds true with some integrable function Ω on the unit sphere Σ if and only if the density of the Lévy measure of the semigroup belongs locally to the Zygmund class LlogL(N╲e). The problem turns out to be related to the properties of the maximal...

Poisson transforms for differential forms

Christoph Harrach (2016)

Archivum Mathematicum

We give a construction of a Poisson transform mapping density valued differential forms on generalized flag manifolds to differential forms on the corresponding Riemannian symmetric spaces, which can be described entirely in terms of finite dimensional representations of reductive Lie groups. Moreover, we will explicitly generate a family of degree-preserving Poisson transforms whose restriction to real valued differential forms has coclosed images. In addition, as a transform on sections of density...

Currently displaying 1501 – 1520 of 2342