Displaying 61 – 80 of 193

Showing per page

Estimates of the remainder in Taylor’s theorem using the Henstock-Kurzweil integral

Erik Talvila (2005)

Czechoslovak Mathematical Journal

When a real-valued function of one variable is approximated by its n th degree Taylor polynomial, the remainder is estimated using the Alexiewicz and Lebesgue p -norms in cases where f ( n ) or f ( n + 1 ) are Henstock-Kurzweil integrable. When the only assumption is that f ( n ) is Henstock-Kurzweil integrable then a modified form of the n th degree Taylor polynomial is used. When the only assumption is that f ( n ) C 0 then the remainder is estimated by applying the Alexiewicz norm to Schwartz distributions of order 1.

Gauge integrals and series

Charles W. Swartz (2004)

Mathematica Bohemica

This note contains a simple example which does clearly indicate the differences in the Henstock-Kurzweil, McShane and strong McShane integrals for Banach space valued functions.

General integration and extensions. I

Štefan Schwabik (2010)

Czechoslovak Mathematical Journal

A general concept of integral is presented in the form given by S. Saks in his famous book Theory of the Integral. A special subclass of integrals is introduced in such a way that the classical integrals (Newton, Riemann, Lebesgue, Perron, Kurzweil-Henstock...) belong to it. A general approach to extensions is presented. The Cauchy and Harnack extensions are introduced for general integrals. The general results give, as a specimen, the Kurzweil-Henstock integration in the form of the extension of...

General integration and extensions.II

Štefan Schwabik (2010)

Czechoslovak Mathematical Journal

This work is a continuation of the paper (Š. Schwabik: General integration and extensions I, Czechoslovak Math. J. 60 (2010), 961–981). Two new general extensions are introduced and studied in the class 𝔗 of general integrals. The new extensions lead to approximate description of the Kurzweil-Henstock integral based on the Lebesgue integral close to the results of S. Nakanishi presented in the paper (S. Nakanishi: A new definition of the Denjoy’s special integral by the method of successive approximation,...

Henstock-Kurzweil and McShane product integration; descriptive definitions

Antonín Slavík, Štefan Schwabik (2008)

Czechoslovak Mathematical Journal

The Henstock-Kurzweil and McShane product integrals generalize the notion of the Riemann product integral. We study properties of the corresponding indefinite integrals (i.e. product integrals considered as functions of the upper bound of integration). It is shown that the indefinite McShane product integral of a matrix-valued function A is absolutely continuous. As a consequence we obtain that the McShane product integral of A over [ a , b ] exists and is invertible if and only if A is Bochner integrable...

Integrals and Banach spaces for finite order distributions

Erik Talvila (2012)

Czechoslovak Mathematical Journal

Let c denote the real-valued functions continuous on the extended real line and vanishing at - . Let r denote the functions that are left continuous, have a right limit at each point and vanish at - . Define 𝒜 c n to be the space of tempered distributions that are the n th distributional derivative of a unique function in c . Similarly with 𝒜 r n from r . A type of integral is defined on distributions in 𝒜 c n and 𝒜 r n . The multipliers are iterated integrals of functions of bounded variation. For each n , the spaces...

Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions

B. Bongiorno, Luisa Di Piazza, Kazimierz Musiał (2006)

Mathematica Bohemica

We study the integrability of Banach valued strongly measurable functions defined on [ 0 , 1 ] . In case of functions f given by n = 1 x n χ E n , where x n belong to a Banach space and the sets E n are Lebesgue measurable and pairwise disjoint subsets of [ 0 , 1 ] , there are well known characterizations for the Bochner and for the Pettis integrability of f (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.

Kurzweil-Henstock type integral on zero-dimensional group and some of its applications

Valentin Skvortsov, Francesco Tulone (2008)

Czechoslovak Mathematical Journal

A Kurzweil-Henstock type integral on a zero-dimensional abelian group is used to recover by generalized Fourier formulas the coefficients of the series with respect to the characters of such groups, in the compact case, and to obtain an inversion formula for multiplicative integral transforms, in the locally compact case.

Currently displaying 61 – 80 of 193