Displaying 321 – 340 of 2145

Showing per page

Bernstein’s analyticity theorem for quantum differences

Tord Sjödin (2007)

Czechoslovak Mathematical Journal

We consider real valued functions f defined on a subinterval I of the positive real axis and prove that if all of f ’s quantum differences are nonnegative then f has a power series representation on I . Further, if the quantum differences have fixed sign on I then f is analytic on I .

Besicovitch subsets of self-similar sets

Ji-Hua Ma, Zhi-Ying Wen, Jun Wu (2002)

Annales de l’institut Fourier

Let E be a self-similar set with similarities ratio r j ( 0 j m - 1 ) and Hausdorff dimension s , let p ( p 0 , p 1 ) ... p m - 1 be a probability vector. The Besicovitch-type subset of E is defined as E ( p ) = x E : lim n 1 n k = 1 n χ j ( x k ) = p j , 0 j m - 1 , where χ j is the indicator function of the set { j } . Let α = dim H ( E ( p ) ) = dim P ( E ( p ) ) = j = 0 m - 1 p j log p j j = 0 m - 1 p i log r j and g be a gauge function, then we prove in this paper:(i) If p = ( r 0 s , r 1 s , , r m - 1 s ) , then s ( E ( p ) ) = s ( E ) , 𝒫 s ( E ( p ) ) = 𝒫 s ( E ) , moreover both of s ( E ) and 𝒫 s ( E ) are finite positive;(ii) If p is a positive probability vector other than ( r 0 s , r 1 s , , r m - 1 s ) , then the gauge functions can be partitioned as follows g ( E ( p ) ) = + lim ¯ t 0 log g ( t ) log t α ; g ( E ( p ) ) = 0 lim ¯ t 0 log g ( t ) log t > α , ...

Best possible sufficient conditions for the Fourier transform to satisfy the Lipschitz or Zygmund condition

Ferenc Móricz (2010)

Studia Mathematica

We consider complex-valued functions f ∈ L¹(ℝ), and prove sufficient conditions in terms of f to ensure that the Fourier transform f̂ belongs to one of the Lipschitz classes Lip(α) and lip(α) for some 0 < α ≤ 1, or to one of the Zygmund classes zyg(α) and zyg(α) for some 0 < α ≤ 2. These sufficient conditions are best possible in the sense that they are also necessary in the case of real-valued functions f for which either xf(x) ≥ 0 or f(x) ≥ 0 almost everywhere.

Best simultaneous L p approximations

Yusuf Karakuş (1998)

Czechoslovak Mathematical Journal

In this paper we study simultaneous approximation of n real-valued functions in L p [ a , b ] and give a generalization of some related results.

Beyond Lebesgue and Baire: generic regular variation

N. H. Bingham, A. J. Ostaszewski (2009)

Colloquium Mathematicae

We show that the No Trumps combinatorial property (NT), introduced for the study of the foundations of regular variation by the authors, permits a natural extension of the definition of the class of functions of regular variation, including the measurable/Baire functions to which the classical theory restricts itself. The "generic functions of regular variation" defined here characterize the maximal class of functions to which the three fundamental theorems of regular variation (Uniform Convergence,...

Beyond Lebesgue and Baire II: Bitopology and measure-category duality

N. H. Bingham, A. J. Ostaszewski (2010)

Colloquium Mathematicae

We re-examine measure-category duality by a bitopological approach, using both the Euclidean and the density topologies of the line. We give a topological result (on convergence of homeomorphisms to the identity) obtaining as a corollary results on infinitary combinatorics due to Kestelman and to Borwein and Ditor. We hence give a unified proof of the measure and category cases of the Uniform Convergence Theorem for slowly varying functions. We also extend results on very slowly varying functions...

Beyond the Gaussian.

Fujii, Kazuyuki (2011)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Bi-Lipschitz Bijections of Z

Itai Benjamini, Alexander Shamov (2015)

Analysis and Geometry in Metric Spaces

It is shown that every bi-Lipschitz bijection from Z to itself is at a bounded L1 distance from either the identity or the reflection.We then comment on the group-theoretic properties of the action of bi-Lipschitz bijections.

Bi-Lipschitz embeddings of hyperspaces of compact sets

Jeremy T. Tyson (2005)

Fundamenta Mathematicae

We study the bi-Lipschitz embedding problem for metric compacta hyperspaces. We observe that the compacta hyperspace K(X) of any separable, uniformly disconnected metric space X admits a bi-Lipschitz embedding in ℓ². If X is a countable compact metric space containing at most n nonisolated points, there is a Lipschitz embedding of K(X) in n + 1 ; in the presence of an additional convergence condition, this embedding may be chosen to be bi-Lipschitz. By way of contrast, the hyperspace K([0,1]) of the...

Bochner product integration

Štefan Schwabik (1994)

Mathematica Bohemica

A new definition of the product integral is given. The definition is based on a procedure which is analogous to the sum definition of the Bochner integral given by J. Kurzweil and E.J. McShane. The new definition is shown to be equivalent to the seemingly verey different one given by J.D. Dollard and C.N. Friedman in [1] and [2].

Currently displaying 321 – 340 of 2145