Displaying 41 – 60 of 303

Showing per page

A formula for calculation of metric dimension of converging sequences

Ladislav, Jr. Mišík, Tibor Žáčik (1999)

Commentationes Mathematicae Universitatis Carolinae

Converging sequences in metric space have Hausdorff dimension zero, but their metric dimension (limit capacity, entropy dimension, box-counting dimension, Hausdorff dimension, Kolmogorov dimension, Minkowski dimension, Bouligand dimension, respectively) can be positive. Dimensions of such sequences are calculated using a different approach for each type. In this paper, a rather simple formula for (lower, upper) metric dimension of any sequence given by a differentiable convex function, is derived....

A Fractional Analog of the Duhamel Principle

Umarov, Sabir, Saydamatov, Erkin (2006)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 35CXX, 26A33, 35S10The well known Duhamel principle allows to reduce the Cauchy problem for linear inhomogeneous partial differential equations to the Cauchy problem for corresponding homogeneous equations. In the paper one of the possible generalizations of the classical Duhamel principle to the time-fractional pseudo-differential equations is established.* This work partially supported by NIH grant P20 GMO67594.

A Fractional LC − RC Circuit

Ayoub, N., Alzoubi, F., Khateeb, H., Al-Qadi, M., Hasan (Qaseer), M., Albiss, B., Rousan, A. (2006)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 30B10, 33B15, 44A10, 47N70, 94C05We suggest a fractional differential equation that combines the simple harmonic oscillations of an LC circuit with the discharging of an RC circuit. A series solution is obtained for the suggested fractional differential equation. When the fractional order α = 0, we get the solution for the RC circuit, and when α = 1, we get the solution for the LC circuit. For arbitrary α we get a general solution which shows how the...

A full characterization of multipliers for the strong ρ -integral in the euclidean space

Lee Tuo-Yeong (2004)

Czechoslovak Mathematical Journal

We study a generalization of the classical Henstock-Kurzweil integral, known as the strong ρ -integral, introduced by Jarník and Kurzweil. Let ( 𝒮 ρ ( E ) , · ) be the space of all strongly ρ -integrable functions on a multidimensional compact interval E , equipped with the Alexiewicz norm · . We show that each element in the dual space of ( 𝒮 ρ ( E ) , · ) can be represented as a strong ρ -integral. Consequently, we prove that f g is strongly ρ -integrable on E for each strongly ρ -integrable function f if and only if g is almost everywhere...

A full descriptive definition of the BV-integral

B. Bongiorno, Luisa Di Piazza, Washek Frank Pfeffer (1995)

Commentationes Mathematicae Universitatis Carolinae

We present a Cauchy test for the almost derivability of additive functions of bounded BV sets. The test yields a full descriptive definition of a coordinate free Riemann type integral.

A global uniqueness result for fractional order implicit differential equations

Said Abbas, Mouffak Benchohra (2012)

Commentationes Mathematicae Universitatis Carolinae

In this paper we investigate the global existence and uniqueness of solutions for the initial value problems (IVP for short), for a class of implicit hyperbolic fractional order differential equations by using a nonlinear alternative of Leray-Schauder type for contraction maps on Fréchet spaces.

Currently displaying 41 – 60 of 303