“More or less" first-return recoverable functions.
Let be a delta-convex mapping, where is an open interval and a Banach space. Let be the set of critical points of . We prove that has zero -dimensional Hausdorff measure.
The paper deals with a class of discrete fractional boundary value problems. We construct the corresponding Green's function, analyse it in detail and establish several of its key properties. Then, by using the fixed point index theory, the existence of multiple positive solutions is obtained, and the uniqueness of the solution is proved by a new theorem on an ordered metric space established by M. Jleli, et al. (2012).
We use an elementary method to prove that each function is a multiplier for the -integral.
For subspaces, and , of the space, , of all derivatives denotes the set of all such that for all . Subspaces of are defined depending on a parameter . In Section 6, is determined for each of these subspaces and in Section 7, is found for and any of these subspaces. In Section 3, is determined for other spaces of functions on related to continuity and higher order differentiation.
Let C denote the Banach space of real-valued continuous functions on [0,1]. Let Φ: C × C → C. If Φ ∈ +, min, max then Φ is an open mapping but the multiplication Φ = · is not open. For an open ball B(f,r) in C let B²(f,r) = B(f,r)·B(f,r). Then f² ∈ Int B²(f,r) for all r > 0 if and only if either f ≥ 0 on [0,1] or f ≤ 0 on [0,1]. Another result states that Int(B₁·B₂) ≠ ∅ for any two balls B₁ and B₂ in C. We also prove that if Φ ∈ +,·,min,max, then the set is residual whenever E is residual in...
We give some necessary and sufficient conditions for an n-1 times differentiable function to be a generalized convex function with respect to an unrestricted n-parameter family.