Displaying 81 – 100 of 561

Showing per page

Singular measures and the little bloch space.

Alicia Cantón (1998)

Publicacions Matemàtiques

Aleksandrov, Anderson and Nicolau have found examples of inner functions that are in the little Bloch space with a specific rate of convergence to zero. As a corollary they obtain positive singular measures defined in the boundary of the unit disc that are simultaneously symmetric and Kahane. Nevertheless their construction is very indirect. We give an explicit example of such measures by means of a martingale argument.

Singular sets of holonomy maps for algebraic foliations

Gabriel Calsamiglia, Bertrand Deroin, Sidney Frankel, Adolfo Guillot (2013)

Journal of the European Mathematical Society

In this article we investigate the natural domain of definition of a holonomy map associated to a singular holomorphic foliation of the complex projective plane. We prove that germs of holonomy between algebraic curves can have large sets of singularities for the analytic continuation. In the Riccati context we provide examples with natural boundary and maximal sets of singularities. In the generic case we provide examples having at least a Cantor set of singularities and even a nonempty open set...

Singular values, Ramanujan modular equations, and Landen transformations

M. Vuorinen (1996)

Studia Mathematica

A new connection between geometric function theory and number theory is derived from Ramanujan’s work on modular equations. This connection involves the function φ K ( r ) recurrent in the theory of plane quasiconformal maps. Ramanujan’s modular identities yield numerous new functional identities for φ 1 / p ( r ) for various primes p.

SLE et invariance conforme

Jean Bertoin (2003/2004)

Séminaire Bourbaki

Les processus de Schramm-Loewner (SLE) induisent des courbes aléatoires du plan complexe, qui vérifient une propriété d’invariance conforme. Ce sont des outils fondamentaux pour la compréhension du comportement asymptotique en régime critique de certains modèles discrets intervenant en physique statistique ; ils ont permis notamment d’établir rigoureusement certaines conjectures importantes dans ce domaine.

Smale's Conjecture on Mean Values of Polynomials and Electrostatics

Dimitrov, Dimitar (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 30C10, 30C15, 31B35.A challenging conjecture of Stephen Smale on geometry of polynomials is under discussion. We consider an interpretation which turns out to be an interesting problem on equilibrium of an electrostatic field that obeys the law of the logarithmic potential. This interplay allows us to study the quantities that appear in Smale’s conjecture for polynomials whose zeros belong to certain specific regions. A conjecture concerning the electrostatic equilibrium...

Smirnov domains

П.Л. Дьюрен (1989)

Zapiski naucnych seminarov Leningradskogo

Smooth quasiregular mappings with branching

Mario Bonk, Juha Heinonen (2004)

Publications Mathématiques de l'IHÉS

We give an example of a 𝒞 3 - ϵ -smooth quasiregular mapping in 3-space with nonempty branch set. Moreover, we show that the branch set of an arbitrary quasiregular mapping inn-space has Hausdorff dimension quantitatively bounded away from n. By using the second result, we establish a new, qualitatively sharp relation between smoothness and branching.

Smooth quasiregular maps with branching in 𝐑 n

Robert Kaufman, Jeremy T. Tyson, Jang-Mei Wu (2005)

Publications Mathématiques de l'IHÉS

According to a theorem of Martio, Rickman and Väisälä, all nonconstant Cn/(n-2)-smooth quasiregular maps in Rn, n≥3, are local homeomorphisms. Bonk and Heinonen proved that the order of smoothness is sharp in R3. We prove that the order of smoothness is sharp in R4. For each n≥5 we construct a C1+ε(n)-smooth quasiregular map in Rn with nonempty branch set.

Smoothness of Green's functions and Markov-type inequalities

Leokadia Białas-Cież (2011)

Banach Center Publications

Let E be a compact set in the complex plane, g E be the Green function of the unbounded component of E with pole at infinity and M ( E ) = s u p ( | | P ' | | E ) / ( | | P | | E ) where the supremum is taken over all polynomials P | E 0 of degree at most n, and | | f | | E = s u p | f ( z ) | : z E . The paper deals with recent results concerning a connection between the smoothness of g E (existence, continuity, Hölder or Lipschitz continuity) and the growth of the sequence M ( E ) n = 1 , 2 , . . . . Some additional conditions are given for special classes of sets.

Currently displaying 81 – 100 of 561