Displaying 101 – 120 of 561

Showing per page

Sobolev Type Decomposition of Paley-Wiener-Schwartz Space with Application to Sampling Theory

Dryanov, Dimiter (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 94A12, 94A20, 30D20, 41A05.We characterize Paley-Wiener-Schwartz space of entire functions as a union of three-parametric linear normed subspaces determined by the type of the entire functions, their polynomial asymptotic on the real line, and the index p ≥ 1 of a Sobolev type Lp-summability on the real line with an appropriate weight function. An entire function belonging to a sub-space of the decomposition is exactly recovered by a sampling series, locally...

Sobre la estabilización robusta para ciertos tipos de sistemas lineales.

J. M. Amillo, F. A. Mata (1989)

Collectanea Mathematica

In this paper we consider the problem of robust stabilization of systems with complex pole variations. We show that techniques from the complex function field can also be used to treat these cases. In particular the problem is reduced to one of interpolation theory on the disk.

Solutions entières d'un système d'équations aux différences. II

Jean-Paul Bézivin, François Gramain (1996)

Annales de l'institut Fourier

Soit s un entier naturel non nul, et f une fonction entière de s variables complexes. Dans un article précédent, nous avons démontré dans le cas s = 1 , que si f est une solution d’un système de 2 équations aux différences à coefficients polynomiaux dans deux directions différentes, avec une condition restrictive portant sur les équations, alors f est le quotient d’un polynôme exponentiel par un polynôme. Dans cet article, nous démontrons ce résultat dans le cas général, et l’analogue pour le cas de...

Solutions entières d'un système d'équations aux différences

Jean-Paul Bézivin, François Gramain (1993)

Annales de l'institut Fourier

En réponse à une question de D.W. Masser, nous démontrons que, pour presque tout système d’équations aux différences 0 m M A m ( z ) f ( z + α m ) = 0 n N B n ( z ) f ( z + β n ) = 0 , où les A m et les B n sont des polynômes non tous nuls et α , β * sont -linéairement indépendants, toute solution f qui est une fonction entière est le quotient d’un polynôme exponentiel par un polynôme. Nous avons un résultat semblable quand la deuxième équation est remplacée par une équation différentielle 0 n N B n ( z ) f ( n ) ( z ) = 0 .

Solutions méromorphes sur d’un système d’équations aux différences à coefficients constants et à deux pas récurrents

Jean-Claude Jolly (2002)

Annales de l’institut Fourier

On s’intéresse aux solutions méromorphes sur d’un système de deux équations aux différences à coefficients constants et à deux pas récurrents. Lorsqu’on fait varier ce système, les solutions décrivent une certaine algèbre 𝒟 [ s , t ] en rapport avec les fonctions elliptiques habituelles et celles de deuxième espèce de Hermite, ainsi que la fonction Z de Jacobi. Pour un système donné, les solutions trouvées forment sur le corps des fonctions elliptiques un espace vectoriel de dimension finie, en rapport...

Solutions of non-homogeneous linear differential equations in the unit disc

Ting-Bin Cao, Zhong-Shu Deng (2010)

Annales Polonici Mathematici

The main purpose of this paper is to consider the analytic solutions of the non-homogeneous linear differential equation f ( k ) + a k - 1 ( z ) f ( k - 1 ) + + a ( z ) f ' + a ( z ) f = F ( z ) , where all coefficients a , a , . . . , a k - 1 , F ≢ 0 are analytic functions in the unit disc = z∈ℂ: |z|<1. We obtain some results classifying the growth of finite iterated order solutions in terms of the coefficients with finite iterated type. The convergence exponents of zeros and fixed points of solutions are also investigated.

Solutions to a class of polynomially generalized Bers–Vekua equations using Clifford analysis

Min Ku, Uwe Kähler, Paula Cerejeiras (2012)

Archivum Mathematicum

In this paper a class of polynomially generalized Vekua–type equations and of polynomially generalized Bers–Vekua equations with variable coefficients defined in a domain of Euclidean space are discussed. Using the methods of Clifford analysis, first the Fischer–type decomposition theorems for null solutions to these equations are obtained. Then we give, under some conditions, the solutions to the polynomially generalized Bers–Vekua equation with variable coefficients. Finally, we present the structure...

Solvability near the characteristic set for a class of planar vector fields of infinite type

Alberto P. Bergamasco, Abdelhamid Meziani (2005)

Annales de l’institut Fourier

We study the solvability of equations associated with a complex vector field L in 2 with C or C ω coefficients. We assume that L is elliptic everywhere except on a simple and closed curve Σ . We assume that, on Σ , L is of infinite type and that L L ¯ vanishes to a constant order. The equations considered are of the form L u = p u + f , with f satisfying compatibility conditions. We prove, in particular, that when the order of vanishing of L L ¯ is &gt; 1 , the equation L u = f is solvable in the C category but not in the C ω category....

Currently displaying 101 – 120 of 561