On the identity of Keldych solutions
In the present paper we study the integral representation of nonnegative finely superharmonic functions in a fine domain subset of a Brelot -harmonic space with countable base of open subsets and satisfying the axiom . When satisfies the hypothesis of uniqueness, we define the Martin boundary of and the Martin kernel and we obtain the integral representation of invariant functions by using the kernel . As an application of the integral representation we extend to the cone of nonnegative...
We consider a nonnegative superbiharmonic function satisfying some growth condition near the boundary of the unit disk in the complex plane. We shall find an integral representation formula for in terms of the biharmonic Green function and a multiple of the Poisson kernel. This generalizes a Riesz-type formula already found by the author for superbihamonic functions satisfying the condition in the unit disk. As an application we shall see that the polynomials are dense in weighted Bergman...
The Martin compactification of a bounded Lipschitz domain is shown to be for a large class of uniformly elliptic second order partial differential operators on .Let be an open Riemannian manifold and let be open relatively compact, connected, with Lipschitz boundary. Then is the Martin compactification of associated with the restriction to of the Laplace-Beltrami operator on . Consequently an open Riemannian manifold has at most one compactification which is a compact Riemannian...
We complement a previous result concerning a converse of the mean-value property for smooth superharmonic functions. The case of harmonic functions was treated by Kuran and an improvement was given by Armitage and Goldstein.
We prove several new results on the multivariate transfinite diameter and its connection with pluripotential theory: a formula for the transfinite diameter of a general product set, a comparison theorem and a new expression involving Robin's functions. We also study the transfinite diameter of the pre-image under certain proper polynomial mappings.