Slow growth for universal harmonic functions.
2000 Mathematics Subject Classification: Primary 30C10, 30C15, 31B35.A challenging conjecture of Stephen Smale on geometry of polynomials is under discussion. We consider an interpretation which turns out to be an interesting problem on equilibrium of an electrostatic field that obeys the law of the logarithmic potential. This interplay allows us to study the quantities that appear in Smale’s conjecture for polynomials whose zeros belong to certain specific regions. A conjecture concerning the electrostatic equilibrium...
This paper examines when it is possible to find a smooth potential on a C1 domain D with prescribed normal derivatives at the boundary. It is shown that this is always possible when D is a Liapunov-Dini domain, and this restriction on D is essential. An application concerning C1 superharmonic extension is given.
Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator on grand Morrey spaces of variable exponents over non-doubling measure spaces. As an application of the boundedness of the maximal operator, we establish Sobolev's inequality for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. We are also concerned with Trudinger's inequality and the continuity for Riesz potentials.
Our aim is to establish Sobolev type inequalities for fractional maximal functions and Riesz potentials in weighted Morrey spaces of variable exponent on the half space . We also obtain Sobolev type inequalities for a function on . As an application, we obtain Sobolev type inequality for double phase functionals with variable exponents , where and satisfy log-Hölder conditions, for , and is nonnegative and Hölder continuous of order .
For open sets with a piecewise smooth boundary it is shown that a solution of the Dirichlet problem for the Laplace equation can be expressed in the form of the sum of the single layer potential and the double layer potential with the same density, where this density is given by a concrete series.
For fairly general open sets it is shown that we can express a solution of the Neumann problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series. If the open set is simply connected and bounded then the solution of the Dirichlet problem is the double layer potential with a density given by a similar series.
For open sets with a piecewise smooth boundary it is shown that we can express a solution of the Robin problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series.
Soit un opérateur parabolique sur écrit sous forme divergence et à coefficients lipschitziens relativement à une métrique adaptée. Nous cherchons à comparer près de la frontière le comportement relatif des -solutions positives sur un domaine “lipschitzien”. Dans un premier temps, nous démontrons un principe de Harnack uniforme pour certaines -solutions positives. Ce principe nous permet alors de démontrer une inégalité de Harnack forte à la frontière pour certains couples de -solutions positives....
Mathematics Subject Classification: 26A33, 31B10In the present paper a New Iterative Method [1] has been employed to find solutions of linear and non-linear fractional diffusion-wave equations. Illustrative examples are solved to demonstrate the efficiency of the method.* This work has partially been supported by the grant F. No. 31-82/2005(SR) from the University Grants Commission, N. Delhi, India.
The relationship between weighted Lipschitz functions and analytic Bloch spaces has attracted much attention. In this paper, we define harmonic --Bloch space and characterize it in terms of and where is a majorant. Similar results are extended to harmonic little --Bloch and Besov spaces. Our results are generalizations of the corresponding ones in G. Ren, U. Kähler (2005).
In this paper, we characterize a class of biharmonic maps from and between product manifolds in terms of the warping function. Examples are constructed when one of the factors is either Euclidean space or sphere.
Simple examples of bounded domains are considered for which the presence of peculiar corners and edges in the boundary causes that the double layer potential operator acting on the space of all continuous functions on can for no value of the parameter be approximated (in the sub-norm) by means of operators of the form (where is the identity operator and is a compact linear operator) with a deviation less then ; on the other hand, such approximability turns out to be possible for...
Two kinds of orthogonal decompositions of the Sobolev space W̊₂¹ and hence also of for bounded domains are given. They originate from a decomposition of W̊₂¹ into the orthogonal sum of the subspace of the -solenoidal functions, k ≥ 1, and its explicitly given orthogonal complement. This decomposition is developed in the real as well as in the complex case. For the solenoidal subspace (k = 0) the decomposition appears in a little different form. In the second kind decomposition the -solenoidal...