Nonarchimedean Harmonie Analysis and Analytic Functions.
Using non-Archimedian integration over spaces of arcs of algebraic varieties, we define stringy Euler numbers associated with arbitrary Kawamata log-terminal pairs. There is a natural Kawamata log-terminal pair corresponding to an algebraic variety having a regular action of a finite group . In this situation we show that the stringy Euler number of this pair coincides with the physicists’ orbifold Euler number defined by the Dixon-Harvey-Vafa-Witten formula. As an application, we prove a conjecture...
A new formula is established for the asymptotic expansion of a matrix integral with values in a finite-dimensional von Neumann algebra in terms of graphs on surfaces which are orientable or non-orientable.
In this article, we prove that there does not exist a family of maximal rank of entire curves in the universal family of hypersurfaces of degree in the complex projective space . This can be seen as a weak version of the Kobayashi conjecture asserting that a general projective hypersurface of high degree is hyperbolic in the sense of Kobayashi.
The formal class of a germ of diffeomorphism is embeddable in a flow if is formally conjugated to the exponential of a germ of vector field. We prove that there are complex analytic unipotent germs of diffeomorphisms at () whose formal class is non-embeddable. The examples are inside a family in which the non-embeddability is of geometrical type. The proof relies on the properties of some linear functional operators that we obtain through the study of polynomial families of diffeomorphisms...
We show that every small resolution of a 3-dimensional terminal hypersurface singularity can occur on a non-embeddable -convex manifold.We give an explicit example of a non-embeddable manifold containing an irreducible exceptional rational curve with normal bundle of type . To this end we study small resolutions of -singularities.
We consider -tuples of commuting operators on a Banach space with real spectra. The holomorphic functional calculus for is extended to algebras of ultra-differentiable functions on , depending on the growth of , , when . In the non-quasi-analytic case we use the usual Fourier transform, whereas for the quasi-analytic case we introduce a variant of the FBI transform, adapted to ultradifferentiable classes.
We study questions related to exceptional sets of pluri-Green potentials in the unit ball B of ℂⁿ in terms of non-isotropic Hausdorff capacity. For suitable measures μ on the ball B, the pluri-Green potentials are defined by , where for a fixed z ∈ B, denotes the holomorphic automorphism of B satisfying , and for every w ∈ B. If dμ(w) = f(w)dλ(w), where f is a non-negative measurable function of B, and λ is the measure on B, invariant under all holomorphic automorphisms of B, then ...
For algebraic number fields with real and complex embeddings and “admissible” subgroups of the multiplicative group of integer units of we construct and investigate certain -dimensional compact complex manifolds . We show among other things that such manifolds are non-Kähler but admit locally conformally Kähler metrics when . In particular we disprove a conjecture of I. Vaisman.