Global regularity of the ...-Neumann problem on circular domains.
We construct a function f holomorphic in a balanced domain D in such that for every positive-dimensional subspace Π of , and for every p with 1 ≤ p < ∞, is not -integrable on Π ∩ D.
We study a natural system of second order differential operators on a symmetric Siegel domain that is invariant under the action of biholomorphic transformations. If is of type two, the space of real valued solutions coincides with pluriharmonic functions. We show the main idea of the proof and give a survey of previous results.
A description of bounded pseudoconvex Reinhardt domains, which are complete with respect to the inner -th Carathéodory-Reiffen distance, is given.
In 1945 the first author introduced the classes , 1 ≤ p<∞, α > -1, of holomorphic functions in the unit disk with finite integral (1) ∬ |f(ζ)|p (1-|ζ|²)α dξ dη < ∞ (ζ=ξ+iη) and established the following integral formula for : (2) f(z) = (α+1)/π ∬ f(ζ) ((1-|ζ|²)α)/((1-zζ̅)2+α) dξdη, z∈ . We have established that the analogues of the integral representation (2) hold for holomorphic functions in Ω from the classes , where: 1) , ; 2) Ω is the matrix domain consisting of those complex m...
We characterise hyperconvexity in terms of Jensen measures with barycentre at a boundary point. We also give an explicit formula for the pluricomplex Green function in the Hartogs triangle. Finally, we study the behaviour of the pluricomplex Green function g(z,w) as the pole w tends to a boundary point.