Distribution des valeurs des fonctions analytiques multiformes
Let D be a bounded strictly pseudoconvex domain of Cn with C ∞ boundary and Y = {z; u1(z) = ... = ul(z) = 0} a holomorphic submanifold in the neighbourhood of D', of codimension l and transversal to the boundary of D.In this work we give a decomposition formula f = u1f1 + ... + ulfl for functions f of the Bergman-Sobolev space vanishing on M = Y ∩ D. Also we give necessary and sufficient conditions on a set of holomorphic functions {fα}|α|≤m on M, so that there exists a holomorphic function in the...
We consider subrings A of the ring of formal power series. They are defined by growth conditions on coefficients such as, for instance, Gevrey conditions. We prove a Weierstrass-Hironaka division theorem for such subrings. Moreover, given an ideal ℐ of A and a series f in A we prove the existence in A of a unique remainder r modulo ℐ. As a consequence, we get a new proof of the noetherianity of A.
On démontre que les domaines bornés, pseudo-convexes, à frontière lisse, de type fini dans , ayant un groupe d’automorphismes non compact sont biholomorphes à des domaines de la forme , où est un polynôme sousharmonique dont le degré est majoré par le type de la frontière du domaine.
In this note we establish a vector-valued version of Beurling’s theorem (the Lax-Halmos theorem) for the polydisc. As an application of the main result, we provide necessary and sufficient conditions for the “weak” completion problem in .
We study Hardy, Bergman, Bloch, and BMO spaces on convex domains of finite type in -dimensional complex space. Duals of these spaces are computed. The essential features of complex domains of finite type, that make these theorems possible, are isolated.