Solutions of the Schröder equation
In this paper a class of polynomially generalized Vekua–type equations and of polynomially generalized Bers–Vekua equations with variable coefficients defined in a domain of Euclidean space are discussed. Using the methods of Clifford analysis, first the Fischer–type decomposition theorems for null solutions to these equations are obtained. Then we give, under some conditions, the solutions to the polynomially generalized Bers–Vekua equation with variable coefficients. Finally, we present the structure...
In this paper we investigate some applications of the trace condition for pluriharmonic functions on a smooth, bounded domain in Cn. This condition, related to the normal component on ∂D of the ∂-operator, permits us to study the Neumann problem for pluriharmonic functions and the ∂-problem for (0,1)-forms on D with solutions having assigned real part on the boundary.
The relationship between weighted Lipschitz functions and analytic Bloch spaces has attracted much attention. In this paper, we define harmonic --Bloch space and characterize it in terms of and where is a majorant. Similar results are extended to harmonic little --Bloch and Besov spaces. Our results are generalizations of the corresponding ones in G. Ren, U. Kähler (2005).
We study extensions of classical theorems on gap power series of a complex variable to the multidimensional case.
We first establish the equivalence between hyperconvexity of a fat bounded Reinhardt domain and the existence of a Stein neighbourhood basis of its closure. Next, we give a necessary and sufficient condition on a bounded Reinhardt domain D so that every holomorphic mapping from the punctured disk into D can be extended holomorphically to a map from Δ into D.