Fonctions séparément analytiques et prolongement analytique faible en dimension infinie
On se propose de retrouver, via des méthodes d'inspiration analytiques basées sur l'utilisation de formules de représentation intégrale attachées à des applications holomorphes propres d'un ouvert de ℂⁿ dans ℂⁿ, les formules de Jacobi généralisées obtenues par C. A. Berenstein, A. Vidras et A. Yger; le fait de disposer de telles preuves (basées sur un raisonnement limité au cadre strictement affine et ne nécessitant pas le recours à une compactification) autorise l'extension de ces résultats au...
Dans cet article, on construit tout d’abord un noyau de Cauchy explicite dans la boule unité de dont les valeurs au bord sont égales au noyau de Szegö. Puis, à partir de ce noyau, on construit explicitement les noyaux qui fournissent les solutions de l’équation qui sont orthogonales aux fonctions holomorphes dans les espaces , où , étant la mesure de Lebesgue et un réel . Nous donnons ensuite les principales estimations dedans et au bord que vérifient ces solutions. Dans une deuxième...
En adaptant les méthodes algébriques et géométriques qu’utilisent M. Sato, T. Kawai et M. Kashiwara pour obtenir le faisceau des microfonctions, nous construisons de manière fonctorielle, donc intrinsèque, un faisceau sur la sphère cotangente à un espace vectoriel réel de dimension finie . Les sections de ce faisceau jouent vis-à-vis des fonctions analytiques sur un rôle analogue à celui des microfonctions vis-à-vis des hyperfonctions. Nous en déduisons une notions de front d’onde à l’infini...
We prove that any positive function on ℂℙ¹ which is constant outside a countable -set is the order function of a fundamental solution of the complex Monge-Ampère equation on the unit ball in ℂ² with a singularity at the origin.