Displaying 461 – 480 of 1395

Showing per page

Hankel operators and weak factorization for Hardy-Orlicz spaces

Aline Bonami, Sandrine Grellier (2010)

Colloquium Mathematicae

We study the holomorphic Hardy-Orlicz spaces Φ ( Ω ) , where Ω is the unit ball or, more generally, a convex domain of finite type or a strictly pseudoconvex domain in ℂⁿ. The function Φ is in particular such that ¹ ( Ω ) Φ ( Ω ) p ( Ω ) for some p > 0. We develop maximal characterizations, atomic and molecular decompositions. We then prove weak factorization theorems involving the space BMOA(Ω). As a consequence, we characterize those Hankel operators which are bounded from Φ ( Ω ) into ¹(Ω).

Harmonic functions on classical rank one balls

Philippe Jaming (2001)

Bollettino dell'Unione Matematica Italiana

In questo articolo studieremo le relazioni fra le funzioni armoniche nella palla iperbolica (sia essa reale, complessa o quaternionica), le funzione armoniche euclidee in questa palla, e le funzione pluriarmoniche sotto certe condizioni di crescita. In particolare, estenderemo al caso quaternionico risultati anteriori dell'autore (nel caso reale), e di A. Bonami, J. Bruna e S. Grellier (nel caso complesso).

Hartogs theorem for forms : solvability of Cauchy-Riemann operator at critical degree

Chin-Huei Chang, Hsuan-Pei Lee (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

The Hartogs Theorem for holomorphic functions is generalized in two settings: a CR version (Theorem 1.2) and a corresponding theorem based on it for C k ¯ -closed forms at the critical degree, 0 k (Theorem 1.1). Part of Frenkel’s lemma in C k category is also...

Henkin measures, Riesz products and singular sets

Evgueni Doubtsov (1998)

Annales de l'institut Fourier

The mutual singularity problem for measures with restrictions on the spectrum is studied. The d -pluriharmonic Riesz product construction on the complex sphere is introduced. Singular pluriharmonic measures supported by sets of maximal Hausdorff dimension are obtained.

Henkin-Ramirez formulas with weight factors

B. Berndtsson, Mats Andersson (1982)

Annales de l'institut Fourier

We construct a generalization of the Henkin-Ramírez (or Cauchy-Leray) kernels for the -equation. The generalization consists in multiplication by a weight factor and addition of suitable lower order terms, and is found via a representation as an “oscillating integral”. As special cases we consider weights which behave like a power of the distance to the boundary, like exp- ϕ with ϕ convex, and weights of polynomial decrease in C n . We also briefly consider kernels with singularities on subvarieties...

Currently displaying 461 – 480 of 1395