Hyperbolische Komplexe Räume und die Vermutung von Mordell.
Completeness of a dilation system on the standard Lebesgue space is considered for 2-periodic functions . We show that the problem is equivalent to an open question on cyclic vectors of the Hardy space on the Hilbert multidisc . Several simple sufficient conditions are exhibited, which include however practically all previously known results (Wintner; Kozlov; Neuwirth, Ginsberg, and Newman; Hedenmalm, Lindquist, and Seip). For instance, each of the following conditions implies cyclicity...
On étudie les propriétés métriques des ensembles analytique réels , avec , algèbre analytique topologiquement noethérienne. Ainsi, on construit de larges classes d’algèbres topologiquement noethériennes et vérifiant des conditions de Łojasiewicz globales d’un certain type. Comme application, on obtient des théorèmes de division de fonction par des fonctions analytiques.
A description of bounded pseudoconvex Reinhardt domains, which are complete with respect to the inner -th Carathéodory-Reiffen distance, is given.
We construct a variant of Koppelman's formula for (0,q)-forms with values in a line bundle, O(l), on projective space. The formula is then applied to a study of a Radon transform for (0,q)-forms, introduced by Gindikin-Henkin-Polyakov. Our presentation follows along the basic lines of Henkin-Polyakov [3], with some simplifications.
In 1945 the first author introduced the classes , 1 ≤ p<∞, α > -1, of holomorphic functions in the unit disk with finite integral (1) ∬ |f(ζ)|p (1-|ζ|²)α dξ dη < ∞ (ζ=ξ+iη) and established the following integral formula for : (2) f(z) = (α+1)/π ∬ f(ζ) ((1-|ζ|²)α)/((1-zζ̅)2+α) dξdη, z∈ . We have established that the analogues of the integral representation (2) hold for holomorphic functions in Ω from the classes , where: 1) , ; 2) Ω is the matrix domain consisting of those complex m...