Les systèmes de représentation absolue dans les espaces des fonctions holomorphes
Si introducono due strutture di gruppo di Lie su un dominio di Siegel omogeneo di . Per la palla unitaria si definisce una famiglia ad un parametro di strutture intermedie; ad ognuna di esse viene associato naturalmente un nucleo riproducente ottenendo un'interpolazione tra il nucleo di Bergman ed il nucleo di Szego.
We construct -closed and -closed positive currents associated to a holomorphic map via cluster points of normalized weighted truncated image currents. They are constructed using analogues of the Ahlfors length-area inequality in higher dimensions. Such classes of currents are also referred to as Ahlfors currents. We give some applications to equidistribution problems in value distribution theory.
Linear topological properties of the Lumer-Smirnov class of the unit polydisc are studied. The topological dual and the Fréchet envelope are described. It is proved that has a weak basis but it is nonseparable in its original topology. Moreover, it is shown that the Orlicz-Pettis theorem fails for .
In this paper we extend the definition of the linearly invariant family and the definition of the universal linearly invariant family to higher dimensional case. We characterize these classes and give some of their properties. We also give a relationship of these families with the Bloch space.
We discuss existence of global solutions of moderate growth to a linear partial differential equation with constant coefficients whose total symbol P(ξ) has the origin as its only real zero. It is well known that for such equations, global solutions tempered in the sense of Schwartz reduce to polynomials. This is a generalization of the classical Liouville theorem in the theory of functions. In our former work we showed that for infra-exponential growth the corresponding assertion is true if and...