A Reflection Principle for Proper Holomorphic Mappings of Strongly Pseudoconvex Domains and Applications.
Sia un compatto, una funzione analitica all'intorno di , ed la massima molteplicità in degli zeri di ; si prova che la potenza (, ) è integrabile in . L'estensione meromorfa dell'applicazione da a tutto (con valori in anziché in ) era già stata provata in [1] e [2].
If H denotes a Hilbert space of analytic functions on a region Ω ⊆ Cd , then the weak product is defined by [...] We prove that if H is a first order holomorphic Besov Hilbert space on the unit ball of Cd , then the multiplier algebras of H and of H ⊙ H coincide.
A version of the Schwarz lemma for correspondences is studied. Two applications are obtained namely, the 'non-increasing' property of the Kobayashi metric under correspondences and a weak version of the Wong-Rosay theorem for convex, finite type domains admitting a 'non-compact' family of proper correspondences.
We give a Schwarz lemma on complex ellipsoids.
In this survey we give geometric interpretations of some standard results on boundary behaviour of holomorphic self-maps in the unit disc of ℂ and generalize them to holomorphic self-maps of some particular domains of ℂⁿ.
Let be a Hermitian symmetric space of tube type, its Silov boundary and the neutral component of the group of bi-holomorphic diffeomorphisms of . Our main interest is in studying the action of on . Sections 1 and 2 are part of a joint work with B. Ørsted (see [4]). In Section 1, as a pedagogical introduction, we study the case where is the unit disc and is the circle. This is a fairly elementary and explicit case, where one can easily get a flavour of the more general results. In Section...
We prove a boundary uniqueness theorem for harmonic functions with respect to Bergman metric in the unit ball of Cn and give an application to a Runge type approximation theorem for such functions.
We continue our previous work on a problem of Janiec connected with a uniqueness theorem, of Cartan-Gutzmer type, for holomorphic mappings in ℂⁿ. To solve this problem we apply properties of (j;k)-symmetrical functions.