Analytic functionals and Bergman spaces
We establish new results on weighted -extension of holomorphic top forms with values in a holomorphic line bundle, from a smooth hypersurface cut out by a holomorphic function. The weights we use are determined by certain functions that we call denominators. We give a collection of examples of these denominators related to the divisor defined by the submanifold.
Let be a bounded, convex and open set with real analytic boundary. Let be the tube with base and let be the Bergman kernel of . If is strongly convex, then is analytic away from the boundary diagonal. In the weakly convex case this is no longer true. In this situation, we relate the off diagonal points where analyticity fails to the Trèves curves. These curves are symplectic invariants which are determined by the CR structure of the boundary of . Note that Trèves curves exist only...
We give several extensions to unbounded domains of the following classical theorem of H. Cartan: A biholomorphism between two bounded complete circular domains of Cn which fixes the origin is a linear map. In our paper, pseudo-convexity plays a main role. Some precise study is done for the case of dimension two and the case where one of the domains is Cn.
Soit un espace de Banach complexe, et notons la boule de rayon centrée en . On considère le problème d’approximation suivant: étant donnés , et une fonction holomorphe dans , existe-t-il toujours une fonction , holomorphe dans , telle que sur ? On démontre que c’est bien le cas si est l’espace des suites sommables.