Displaying 81 – 100 of 136

Showing per page

Points réguliers d'un sous-analytique

Krzysztof Kurdyka (1988)

Annales de l'institut Fourier

On donne une autre démonstration (sans désingularisation de Hironaka) du théorème de Tamm, qui dit que la partie régulière d’un sous-analytique est sous-analytique. En plus, on montre que pour chaque fonction f : U R de classe SUBB (“sous-analytique à l’infini”), où U est un sous-ensemble ouvert et borné dans R ( n , il existe un entier k N tel que f est analytique dans x U si et seulement si f est de classe G k ( k -fois différentiable au sens de Gateaux) dans un voisinage de x .

Quantifier elimination in quasianalytic structures via non-standard analysis

Krzysztof Jan Nowak (2015)

Annales Polonici Mathematici

The paper is a continuation of an earlier one where we developed a theory of active and non-active infinitesimals and intended to establish quantifier elimination in quasianalytic structures. That article, however, did not attain full generality, which refers to one of its results, namely the theorem on an active infinitesimal, playing an essential role in our non-standard analysis. The general case was covered in our subsequent preprint, which constitutes a basis for the approach presented here....

Quantifier elimination, valuation property and preparation theorem in quasianalytic geometry via transformation to normal crossings

Krzysztof Jan Nowak (2009)

Annales Polonici Mathematici

This paper investigates the geometry of the expansion Q of the real field ℝ by restricted quasianalytic functions. The main purpose is to establish quantifier elimination, description of definable functions by terms, the valuation property and preparation theorem (in the sense of Parusiński-Lion-Rolin). To this end, we study non-standard models of the universal diagram T of Q in the language ℒ augmented by the names of rational powers. Our approach makes no appeal to the Weierstrass preparation...

Rational points on a subanalytic surface

Jonathan Pila (2005)

Annales de l’institut Fourier

Let X n be a compact subanalytic surface. This paper shows that, in a suitable sense, there are very few rational points of X that do not lie on some connected semialgebraic curve contained in X .

Relations among analytic functions. I

Edward Bierstone, P. D. Milman (1987)

Annales de l'institut Fourier

Neither real analytic sets nor the images of real or complex analytic mappings are, in general, coherent. Let Φ : X Y be a morphism of real analytic spaces, and let Ψ : 𝒢 be a homomorphism of coherent modules over the induced ring homomorphism Φ * : 𝒪 Y 𝒪 X . We conjecture that, despite the failure of coherence, certain natural discrete invariants of the modules of formal relations a = Ker Ψ ^ a , a X , are upper semi-continuous in the analytic Zariski topology of X . We prove semicontinuity in many cases (e.g. in the algebraic category)....

Relations among analytic functions. II

Edward Bierstone, P. D. Milman (1987)

Annales de l'institut Fourier

This is a sequel to “Relations among analytic functions I”, Ann. Inst. Fourier, 37, fasc. 1, [pp. 187-239]. We reduce to semicontinuity of local invariants the problem of finding 𝒞 solutions to systems of equations involving division and composition by analytic functions. We prove semicontinuity in several general cases : in the algebraic category, for “regular” mappings, and for module homomorphisms over a finite mapping.

Relative subanalytic sheaves

Teresa Monteiro Fernandes, Luca Prelli (2014)

Fundamenta Mathematicae

Given a real analytic manifold Y, denote by Y s a the associated subanalytic site. Now consider a product Y = X × S. We construct the endofunctor S on the category of sheaves on Y s a and study its properties. Roughly speaking, S is a sheaf on X s a × S . As an application, one can now define sheaves of functions on Y which are tempered or Whitney in the relative sense, that is, only with respect to X.

Siciak's extremal function in complex and real analysis

W. Pleśniak (2003)

Annales Polonici Mathematici

The Siciak extremal function establishes an important link between polynomial approximation in several variables and pluripotential theory. This yields its numerous applications in complex and real analysis. Some of them can be found on a rich list drawn up by Klimek in his well-known monograph "Pluripotential Theory". The purpose of this paper is to supplement it by applications in constructive function theory.

Currently displaying 81 – 100 of 136