Displaying 321 – 340 of 403

Showing per page

Sur l'irréductibilité dans l'anneau des séries de Dirichlet analytiques.

Frédéric Bayart, Augustin Mouze (2005)

Publicacions Matemàtiques

We discuss some local analytic properties of the ring of Dirichlet series. We obtain mainly the equivalence between the irreducibility in the analytic ring and in the formal one. In the same way we prove that the ring of analytic Dirichlet series is integrally closed in the ring of formal Dirichlet series. Finally we introduce the notion of standard basis in these rings and we give a finitely generated ideal which does not admit standard bases.

Tangentes limites, cône de Whitney et régularité par intersection

Patrice Orro (1990)

Annales de l'institut Fourier

Nous caractérisons, en terme de dimension (topologique et de Hausdorff) des fibres des espaces de limites de tangents et du cône de Whitney, les conditions de régularité b cod q et b * sur une stratification C 1 . Nous précisons ces résultats lorsque les espaces qui interviennent ne sont pas fractals, en particulier lorsque la stratification est sous-analytique.

Tempered solutions of 𝒟 -modules on complex curves and formal invariants

Giovanni Morando (2009)

Annales de l’institut Fourier

Let X be a complex analytic curve. In this paper we prove that the subanalytic sheaf of tempered holomorphic solutions of 𝒟 -modules on X induces a fully faithful functor on a subcategory of germs of formal holonomic 𝒟 -modules. Further, given a germ of holonomic 𝒟 -module, we obtain some results linking the subanalytic sheaf of tempered solutions of and the classical formal and analytic invariants of .

The Briançon-Skoda number of analytic irreducible planar curves

Jacob Sznajdman (2014)

Annales de l’institut Fourier

The Briançon-Skoda number of a ring R is defined as the smallest integer k, such that for any ideal I R and l 1 , the integral closure of I k + l - 1 is contained in I l . We compute the Briançon-Skoda number of the local ring of any analytic irreducible planar curve in terms of its Puiseux characteristics. It turns out that this number is closely related to the Milnor number.

The degree at infinity of the gradient of a polynomial in two real variables

Maciej Sękalski (2005)

Annales Polonici Mathematici

Let f:ℝ² → ℝ be a polynomial mapping with a finite number of critical points. We express the degree at infinity of the gradient ∇f in terms of the real branches at infinity of the level curves {f(x,y) = λ} for some λ ∈ ℝ. The formula obtained is a counterpart at infinity of the local formula due to Arnold.

The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms

Satoshi Koike, Laurentiu Paunescu (2009)

Annales de l’institut Fourier

Let A n be a set-germ at 0 n such that 0 A ¯ . We say that r S n - 1 is a direction of A at 0 n if there is a sequence of points { x i } A { 0 } tending to 0 n such that x i x i r as i . Let D ( A ) denote the set of all directions of A at 0 n .Let A , B n be subanalytic set-germs at 0 n such that 0 A ¯ B ¯ . We study the problem of whether the dimension of the common direction set, dim ( D ( A ) D ( B ) ) is preserved by bi-Lipschitz homeomorphisms. We show that although it is not true in general, it is preserved if the images of A and B are also subanalytic. In particular if two subanalytic...

Currently displaying 321 – 340 of 403