Enveloppes polynomiales d’unions de plans réels dans
En reprenant le travail de Weinstock concernant l’union de deux sous-espaces, nous montrons que peut être obtenu comme l’union d’un nombre fini de sous-espaces vectoriels totalement réels maximaux, pour tout supérieur à un. Ceci contraste avec le cas des droites complexes de , dont il faut un ensemble de capacité positive pour que l’enveloppe soit tout l’espace. On étudie aussi le cas des trois plans réels de : si les trois unions deux à deux ne sont pas polynomialement convexes, alors l’enveloppe...