Displaying 21 – 40 of 178

Showing per page

Automorphism groups of minimal real-analytic CR manifolds

Robert Juhlin, Bernhard Lamel (2013)

Journal of the European Mathematical Society

We show that the local automorphism group of a minimal real-analytic CR manifold M is a finite dimensional Lie group if (and only if) M is holomorphically nondegenerate by constructing a jet parametrization.

Automorphism groups of the classical domains, I

Marco Abate (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa Nota viene dato un nuovo metodo elementare per determinare il gruppo degli automorfismi del primo dominio classico. In una Nota successiva, con procedimenti del tutto analoghi verranno determinati i gruppi degli automorfismi del terzo e del quarto dominio classico.

Automorphism groups of the classical domains. II

Marco Abate (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa Nota vengono determinati, con un nuovo metodo elementare, i gruppi di automorfismi del terzo e del quarto dominio classico. Gli strumenti utilizzati sono quelli già introdotti nella precedente Nota, ove erano stati usati per determinare il gruppo degli automorfismi del primo dominio classico.

Automorphismes analytiques d'un domaine de Reinhardt borné d'un espace de Banach à base

Jean-Pierre Vigué (1984)

Annales de l'institut Fourier

Dans cet article, j’étudie le groupe des automorphismes analytiques d’un domaine de Reinhardt borné d’un espace de Banach complexe à base. Je montre que, dans certains cas, ce groupe est un groupe de Lie banachique réel et je donne une classification complète des domaines de Reinhardt bornés homogènes. Pour certains espaces de Banach, je montre que les seuls automorphismes analytiques de la boule-unité ouverte sont linéaires.

C*-actions.

Andrew John Sommese, James B. Carrell (1978)

Mathematica Scandinavica

Characterization of cycle domains via Kobayashi hyperbolicity

Gregor Fels, Alan Huckleberry (2005)

Bulletin de la Société Mathématique de France

A real form G of a complex semi-simple Lie group G has only finitely many orbits in any given G -flag manifold Z = G / Q . The complex geometry of these orbits is of interest, e.g., for the associated representation theory. The open orbits D generally possess only the constant holomorphic functions, and the relevant associated geometric objects are certain positive-dimensional compact complex submanifolds of D which, with very few well-understood exceptions, are parameterized by the Wolf cycle domains Ω W ( D ) in...

Complex-symmetric spaces

Ralf Lehmann (1989)

Annales de l'institut Fourier

A compact complex space X is called complex-symmetric with respect to a subgroup G of the group Aut 0 ( X ) , if each point of X is isolated fixed point of an involutive automorphism of G . It follows that G is almost G 0 -homogeneous. After some examples we classify normal complex-symmetric varieties with G 0 reductive. It turns out that X is a product of a Hermitian symmetric space and a compact torus embedding satisfying some additional conditions. In the smooth case these torus embeddings are classified using...

Currently displaying 21 – 40 of 178