Hyperbolicity of negatively curved Kähler manifolds.
Let be a bounded symmetric domain in and an irreducible arithmetic lattice which operates freely on . We prove that the cusp–compactification of is hyperbolic.
Let M be a hyperkähler manifold, and F a reflexive sheaf on M. Assume that F (away from its singularities) admits a connection ▿ with a curvature Θ which is invariant under the standard SU(2)-action on 2-forms. If Θ is square-integrable, such sheaf is called hyperholomorphic. Hyperholomorphic sheaves were studied at great length in [21]. Such sheaves are stable and their singular sets are hyperkähler subvarieties in M. In the present paper, we study sheaves admitting a connection with SU(2)-invariant...