Previous Page 4

Displaying 61 – 74 of 74

Showing per page

Tempered solutions of 𝒟 -modules on complex curves and formal invariants

Giovanni Morando (2009)

Annales de l’institut Fourier

Let X be a complex analytic curve. In this paper we prove that the subanalytic sheaf of tempered holomorphic solutions of 𝒟 -modules on X induces a fully faithful functor on a subcategory of germs of formal holonomic 𝒟 -modules. Further, given a germ of holonomic 𝒟 -module, we obtain some results linking the subanalytic sheaf of tempered solutions of and the classical formal and analytic invariants of .

The characteristic variety of a generic foliation

Jorge Vitório Pereira (2012)

Journal of the European Mathematical Society

We confirm a conjecture of Bernstein–Lunts which predicts that the characteristic variety of a generic polynomial vector field has no homogeneous involutive subvarieties besides the zero section and subvarieties of fibers over singular points.

The monodromy conjecture for zeta functions associated to ideals in dimension two

Lise Van Proeyen, Willem Veys (2010)

Annales de l’institut Fourier

The monodromy conjecture states that every pole of the topological (or related) zeta function induces an eigenvalue of monodromy. This conjecture has already been studied a lot. However in full generality it is proven only for zeta functions associated to polynomials in two variables.In this article we work with zeta functions associated to an ideal. First we work in arbitrary dimension and obtain a formula (like the one of A’Campo) to compute the “Verdier monodromy” eigenvalues associated to an...

Un théorème à la « Thom-Sebastiani » pour les intégrales-fibres

Daniel Barlet (2010)

Annales de l’institut Fourier

L’objet de cet article est de démontrer un théorème «  à la Thom-Sebastiani  » pour les développements asymptotiques des intégrales-fibres des fonctions du type f g : ( x , y ) f ( x ) + g ( y ) sur ( p × q , ( 0 , 0 ) ) en terme des développements asymptotiques des intégrales-fibres associées aux germes holomorphes f : ( p , 0 ) ( , 0 ) et g : ( q , 0 ) ( , 0 ) . Ceci se ramène à calculer les développements asymptotiques d’une convolution Φ * Ψ à partir des développements asymptotiques de Φ et Ψ modulo les termes non singuliers.Pour obtenir un résultat précis donnant la non nullité des termes...

Universal isomonodromic deformations of meromorphic rank 2 connections on curves

Viktoria Heu (2010)

Annales de l’institut Fourier

We consider tracefree meromorphic rank 2 connections over compact Riemann surfaces of arbitrary genus. By deforming the curve, the position of the poles and the connection, we construct the global universal isomonodromic deformation of such a connection. Our construction, which is specific to the tracefree rank 2 case, does not need any Stokes analysis for irregular singularities. It is thereby more elementary than the construction in arbitrary rank due to B. Malgrange and I. Krichever and it includes...

μ -constant monodromy groups and marked singularities

Claus Hertling (2011)

Annales de l’institut Fourier

μ -constant families of holomorphic function germs with isolated singularities are considered from a global perspective. First, a monodromy group from all families which contain a fixed singularity is studied. It consists of automorphisms of the Milnor lattice which respect not only the intersection form, but also the Seifert form and the monodromy. We conjecture that it contains all such automorphisms, modulo ± id . Second, marked singularities are defined and global moduli spaces for right equivalence...

Currently displaying 61 – 74 of 74

Previous Page 4