Suto's method applied to a problem of Färe and Mitchell. (Summary).
This paper investigates adaptive switched modified function projective synchronization between two complex nonlinear hyperchaotic systems with unknown parameters. Based on adaptive control and parameter identification, corresponding adaptive controllers with appropriate parameter update laws are constructed to achieve switched modified function projective synchronization between two different complex nonlinear hyperchaotic systems and to estimate the unknown system parameters. A numerical simulation...
The canonical form theorem, applied to a certain group of symmetry transformations of certain Fuchsian equations, leads automatically to the integration of them. The result can be extended to any n-order differential equation possesing a certain pointlike group of symmetries with a maximal abelian Lie-subgroup of order c.
Symmetries of the defocusing nonlinear Schrödinger equation are expressed in action-angle coordinates and characterized in terms of the periodic and Dirichlet spectrum of the associated Zakharov-Shabat system. Application: proof of the conjecture that the periodic spectrum of a Zakharov-Shabat operator is symmetric,i.e. for all , if and only if the sequence of gap lengths, , is symmetric with respect to .
The synchronization of fractional-order complex networks with delay is investigated in this paper. By constructing a novel Lyapunov-Krasovskii function and taking integer derivative instead of fractional derivative of the function, a sufficient criterion is obtained in the form of linear matrix inequalities to realize synchronizing complex dynamical networks. Finally, a numerical example is shown to illustrate the feasibility and effectiveness of the proposed method.
In this paper, we propose a new approach of designing a controller and an update rule of unknown parameters for synchronizing fractional-order system with multiple delays and prove the correctness of the approach according to the fractional Lyapunov stable theorem. Based on the proposed approach, synchronizing fractional delayed chaotic system with and without unknown parameters is realized. Numerical simulations are carried out to confirm the effectiveness of the approach.