Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
On sait, par la méthode du vecteur cyclique, réduire un système différentiel linéaire à coefficients séries formelles à une équation différentielle scalaire. Ce procédé permet le calcul explicite de l’invariant de Katz. Cependant du point de vue pratique on constate que la méthode est d’un maniement lourd et couteux (cf.A. Hilali, Thèse de 3ème cycle IMAG, Grenoble 1982). Dans cet article, on construit un algorithme simple permettant le calcul de cet invariant sans l’utilisation du vecteur cyclique....
This work deals with a non linear inverse problem of reconstructing an unknown boundary γ, the boundary conditions prescribed on γ being of Signorini type, by using boundary measurements. The problem is turned into an optimal shape design one, by constructing a Kohn & Vogelius-like cost function, the only minimum of which is proved to be the unknown boundary. Furthermore, we prove that the derivative of this cost function with respect to a direction θ depends only on the state u0, and not...
On peut construire facilement des exemples de connexions plates de rang sur comme tirés en arrière de connexions sur . On donne un exemple de connexion qui ne peut être obtenue de cette manière. Cet exemple est construit à partir d’une solution algébrique de l’équation de Painlevé VI. On en déduit un feuilletage modulaire. La preuve de ce fait repose sur la classification des feuilletages sur les surfaces projectives par leurs dimensions de Kodaira, fruit du travail de Brunella, McQuillan et...
On donne une borne supérieur du nombre des valeurs propres négatives de l’opérateur de Schrödinger généralisé, cette borne est donnée en fonction d’un nombre fini de cube dyadiques minimaux.
By applying the Leggett-Williams fixed point theorem in a suitably constructed cone, we obtain the existence of at least three unbounded positive solutions for a boundary value problem on the half line. Our result improves and complements some of the work in the literature.
This paper discusses the asymptotic behavior of solutions of the Liénard equation, especially the global behavior of unbounded solutions, and also gives a class of sufficient and necessary conditions for the orbit of a solution to intersect the vertical isocline.