Restricted total stability and total attractivity.
This paper presents vector versions of some existence results recently published for certain fourth order differential systems based on generalisations drawn from possibilities arising from the underlying auxiliary equation. The results obtained also extend some known works involving third order differential systems to the corresponding fourth order.
Le but de cet article est de formuler de façon géométrique l’idée maîtresse de Voros dans Ann. Inst. Henri Poincaré, Sect. A 39, 211-238 (1983) : les solutions de l’équation de Schrödinger stationnaire à une dimension, à potentiel polynomial, sont codées exactement dans le domaine complexe par leurs développements BKW (développements formels, divergents, en puissances de la constante de Planck), d’une façon entièrement lisible dans la géométrie des périodes de la forme (=variable de position,...
We study the resurgent structure associated with a Hamilton-Jacobi equation. This equation is obtained as the inner equation when studying the separatrix splitting problem for a perturbed pendulum via complex matching. We derive the Bridge equation, which encompasses infinitely many resurgent relations satisfied by the formal solution and the other components of the formal integral.
The Euler-MacLaurin summation formula compares the sum of a function over the lattice points of an interval with its corresponding integral, plus a remainder term. The remainder term has an asymptotic expansion, and for a typical analytic function, it is a divergent (Gevrey-1) series. Under some decay assumptions of the function in a half-plane (resp. in the vertical strip containing the summation interval), Hardy (resp. Abel-Plana) prove that the asymptotic expansion is a Borel summable series,...
Henri Poincaré avait déjà remarqué que les variétés stable et instable du pendule perturbé, défini par l’hamiltonienne coïncident pas lorsque que le paramètre n’est pas nul, mais qu’on peut leur associer un même développement formel divergent en puissance de . Cette divergence est ici analysée au moyen de la récente théorie de la résurgence, et du calcul étranger qui permet de trouver un équivalent asymptotique de l’écart des deux variétés pour tendant vers zéro - du moins cela est-il montré...
Dans cet article, nous établissons le caractère résurgent-sommable de séries formelles ramifiées solutions d’une classe d’équations différentielles linéaires. Nous analysons d’une part le problème de la dépendance analytique des sommes de Borel de telles séries par rapport aux paramètres de cette classe d’équations différentielles linéaires d’ordre deux, et d’autre part, nous analysons la structure résurgente complète associée à ces séries formelles via l’outil des singularités générales (ou microfonctions)....
We prove an existence theorem for the equation x' = f(t,xₜ), x(Θ) = φ(Θ), where xₜ(Θ) = x(t+Θ), for -r ≤ Θ < 0, t ∈ Iₐ, Iₐ = [0,a], a ∈ R₊ in a Banach space, using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function f satisfies some conditions expressed in terms of the measure of weak noncompactness.
Some problems in differential equations evolve towards Topology from an analytical origin. Two such problems will be discussed: the existence of solutions asymptotic to the equilibrium and the stability of closed orbits of Hamiltonian systems. The theory of retracts and the fixed point index have become useful tools in the study of these questions.
Nous considérons un germe de 1-forme analytique dans dont le 1-jet est . Nous montrons que si l’équation définit un centre (i.e toutes les courbes solutions sont des cycles) il existe une involution analytique de préservant le portrait de phase du système. Géométriquement ceci signifie que les centres analytiques nilpotents sont obtenus par image réciproque par des applications pli. Un théorème de conjugaison équivariante permet d’obtenir une classification complète de ces centres.