Elementary acceleration and multisummability. I
We apply Max Müller's Theorem to second order equations u'' = f(t,u,u') to obtain solutions between given functions v,w.
In many markets, especially in energy markets, electricity markets for instance, the detention of the physical asset is quite difficult. This is also the case for crude oil as treated by Davis (2000). So one can identify a good proxy which is an asset (financial or physical) (one)whose the spot price is significantly correlated with the spot price of the underlying (e.g. electicity or crude oil). Generally, the market could become incomplete. We explicit exact hedging strategies for exponential...
We give a survey of results on global stability for deterministic compartmental epidemiological models. Using Lyapunov techniques we revisit a classical result, and give a simple proof. By the same methods we also give a new result on differential susceptibility and infectivity models with mass action and an arbitrary number of compartments. These models encompass the so-called differential infectivity and staged progression models. In the two cases we prove that if the basic reproduction ratio...
A fixed point theorem in ordered spaces and a recently proved monotone convergence theorem are applied to derive existence and comparison results for solutions of a functional integral equation of Volterra type and a functional impulsive Cauchy problem in an ordered Banach space. A novel feature is that equations contain locally Henstock-Kurzweil integrable functions.
Nous démontrons l’unicité des solutions faibles pour une classe d’équations de transport dont les vitesses sont partiellement à variations bornées. Nous nous intéressons à des champs de vecteurs du typeavec une borne sur la divergence de chacun des champs . Ce modèle a été étudié récemment dans [LL] par C. Le Bris et P.-L. Lions avec une régularité ; nous montrons ici également que, dans le cas , le contrôle de la divergence totale du champ est suffisant. Notre méthode consiste à démontrer...
We consider an ordinary or stochastic nonlinear equation with generalized coefficients as an equation in differentials in the algebra of new generalized functions in the sense of [8]. Consequently, the solution of such an equation is a new generalized function. We formulate conditions under which the solution of a given equation in the algebra of new generalized functions is associated with an ordinary function or process. Moreover the class of all possible associated functions and processes is...
This paper is concerned with existence of equilibrium of a set-valued map in a given compact subset of a finite-dimensional space. Previously known conditions ensuring existence of equilibrium imply that the set is either invariant or viable for the differential inclusion generated by the set-valued map. We obtain some equilibrium existence results with conditions which imply neither invariance nor viability of the given set. The problem of existence of strict equilibria is also discussed.
In this article, the equivalence and symmetries of underdetermined differential equations and differential equations with deviations of the first order are considered with respect to the pseudogroup of transformations
The problem of topological classification is fundamental in the study of dynamical systems. However, when we consider systems without well-posedness, it is unclear how to generalize the notion of equivalence. For example, when a system has trajectories distinguished only by parametrization, we cannot apply the usual definition of equivalence based on the phase space, which presupposes the uniqueness of trajectories. In this study, we formulate a notion of “topological equivalence” using the axiomatic...
We consider a class of variational problems for differential inclusions, related to the control of wild fires. The area burned by the fire at time t> 0 is modelled as the reachable set for a differential inclusion ∈F(x), starting from an initial set R0. To block the fire, a barrier can be constructed progressively in time. For each t> 0, the portion of the wall constructed within time t is described by a rectifiable set γ(t) ⊂. In this paper we show that the search for blocking strategies...
An equivariant degree is defined for equivariant completely continuous multivalued vector fields with compact convex values. Then it is applied to obtain a result on existence of solutions to a second order BVP for differential inclusions carrying some symmetries.