Displaying 81 – 100 of 245

Showing per page

Existence and approximation results for gradient flows

Riccarda Rossi, Giuseppe Savaré (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space H u ...

Existence and controllability for nondensely defined partial neutral functional differential inclusions

Khalil Ezzinbi, Soumia Lalaoui Rhali (2015)

Applications of Mathematics

We give sufficient conditions for the existence of integral solutions for a class of neutral functional differential inclusions. The assumptions on the generator are reduced by considering nondensely defined Hille-Yosida operators. Existence and controllability results are established by combining the theory of addmissible multivalued contractions and Frigon's fixed point theorem. These results are applied to a neutral partial differential inclusion with diffusion.

Existence and density results for retarded subdifferential evolution inclusions

Tiziana Cardinali, Simona Pieri (1996)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we study Cauchy problems for retarded evolution inclusions, where the Fréchet subdifferential of a function F:Ω→R∪{+∞} (Ω is an open subset of a real separable Hilbert space) having a φ-monotone subdifferential of oder two is present. First we establish the existence of extremal trajectories and we show that the set of these trajectories is dense in the solution set of the original convex problem for the norm topology of the Banach space C([-r, T₀], Ω) ("strong relaxation theorem")....

Existence and iteration of positive solutions for a singular two-point boundary value problem with a p -Laplacian operator

De-xiang Ma, Weigao Ge, Zhan-Ji Gui (2007)

Czechoslovak Mathematical Journal

In the paper, we obtain the existence of symmetric or monotone positive solutions and establish a corresponding iterative scheme for the equation ( φ p ( u ' ) ) ' + q ( t ) f ( u ) = 0 , 0 < t < 1 , where φ p ( s ) : = | s | p - 2 s , p > 1 , subject to nonlinear boundary condition. The main tool is the monotone iterative technique. Here, the coefficient q ( t ) may be singular at t = 0 , 1 .

Existence and multiplicity of solutions for a fractional p -Laplacian problem of Kirchhoff type via Krasnoselskii’s genus

Ghania Benhamida, Toufik Moussaoui (2018)

Mathematica Bohemica

We use the genus theory to prove the existence and multiplicity of solutions for the fractional p -Kirchhoff problem - M Q | u ( x ) - u ( y ) | p | x - y | N + p s d x d y p - 1 ( - Δ ) p s u = λ h ( x , u ) in Ω , u = 0 on N Ω , where Ω is an open bounded smooth domain of N , p > 1 , N > p s with s ( 0 , 1 ) fixed, Q = 2 N ( C Ω × C Ω ) , λ > 0 is a numerical parameter, M and h are continuous functions.

Existence and positivity of solutions for a nonlinear periodic differential equation

Ernest Yankson (2012)

Archivum Mathematicum

We study the existence and positivity of solutions of a highly nonlinear periodic differential equation. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ a modification of Krasnoselskii’s fixed point theorem introduced by T. A. Burton ([4], Theorem 3) to show the existence and positivity of solutions of the equation.

Existence and regularity of the solution of a time dependent Hartree-Fock equation coupled with a classical nuclear dynamics.

Lucie Baudouin (2005)

Revista Matemática Complutense

We study an Helium atom (composed of one nucleus and two electrons) submitted to a general time dependent electric field, modeled by the Hartree-Fock equation, whose solution is the wave function of the electrons, coupled with the classical Newtonian dynamics, for the position of the nucleus. We prove a result of existence and regularity for the Cauchy problem, where the main ingredients are a preliminary study of the regularity in a nonlinear Schrödinger equation with semi-group techniques and...

Existence and relaxation results for nonlinear second order evolution inclusions

Stanisław Migórski (1995)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we study nonlinear evolution inclusions associated with second order equations defined on an evolution triple. We prove two existence theorems for the cases where the orientor field is convex valued and nonconvex valued, respectively. We show that when the orientor field is Lipschitzean, then the set of solutions of the nonconvex problem is dense in the set of solutions of the convexified problem.

Existence and uniqueness for dynamical unilateral contact with Coulomb friction : a model problem

Patrick Ballard, Stéphanie Basseville (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A simple dynamical problem involving unilateral contact and dry friction of Coulomb type is considered as an archetype. We are concerned with the existence and uniqueness of solutions of the system with Cauchy data. In the frictionless case, it is known [Schatzman, Nonlinear Anal. Theory, Methods Appl. 2 (1978) 355–373] that pathologies of non-uniqueness can exist, even if all the data are of class C . However, uniqueness is recovered provided that the data are analytic [Ballard, Arch. Rational Mech....

Existence and uniqueness for dynamical unilateral contact with Coulomb friction: a model problem

Patrick Ballard, Stéphanie Basseville (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A simple dynamical problem involving unilateral contact and dry friction of Coulomb type is considered as an archetype. We are concerned with the existence and uniqueness of solutions of the system with Cauchy data. In the frictionless case, it is known [Schatzman, Nonlinear Anal. Theory, Methods Appl.2 (1978) 355–373] that pathologies of non-uniqueness can exist, even if all the data are of class C∞. However, uniqueness is recovered provided that the data are analytic [Ballard, Arch. Rational...

Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems

Choukri Derbazi, Hadda Hammouche (2021)

Mathematica Bohemica

We study the existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Our results are based on Schauder's fixed point theorem and the Banach contraction principle fixed point theorem. Examples are provided to illustrate the main results.

Currently displaying 81 – 100 of 245