Existence and approximation results for gradient flows
This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space
This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space
A general result on existence and continuous dependence of the solution for a quite wide class of N.F.D.E. is given. Further, an abstract equivalence is proved for three different formulations of N.F.D.E.
We give sufficient conditions for the existence of integral solutions for a class of neutral functional differential inclusions. The assumptions on the generator are reduced by considering nondensely defined Hille-Yosida operators. Existence and controllability results are established by combining the theory of addmissible multivalued contractions and Frigon's fixed point theorem. These results are applied to a neutral partial differential inclusion with diffusion.
In this paper we study Cauchy problems for retarded evolution inclusions, where the Fréchet subdifferential of a function F:Ω→R∪{+∞} (Ω is an open subset of a real separable Hilbert space) having a φ-monotone subdifferential of oder two is present. First we establish the existence of extremal trajectories and we show that the set of these trajectories is dense in the solution set of the original convex problem for the norm topology of the Banach space C([-r, T₀], Ω) ("strong relaxation theorem")....
In the paper, we obtain the existence of symmetric or monotone positive solutions and establish a corresponding iterative scheme for the equation , , where , , subject to nonlinear boundary condition. The main tool is the monotone iterative technique. Here, the coefficient may be singular at .
We use the genus theory to prove the existence and multiplicity of solutions for the fractional -Kirchhoff problem where is an open bounded smooth domain of , , with fixed, , is a numerical parameter, and are continuous functions.
We study the existence and positivity of solutions of a highly nonlinear periodic differential equation. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ a modification of Krasnoselskii’s fixed point theorem introduced by T. A. Burton ([4], Theorem 3) to show the existence and positivity of solutions of the equation.
We study an Helium atom (composed of one nucleus and two electrons) submitted to a general time dependent electric field, modeled by the Hartree-Fock equation, whose solution is the wave function of the electrons, coupled with the classical Newtonian dynamics, for the position of the nucleus. We prove a result of existence and regularity for the Cauchy problem, where the main ingredients are a preliminary study of the regularity in a nonlinear Schrödinger equation with semi-group techniques and...
In this paper we study nonlinear evolution inclusions associated with second order equations defined on an evolution triple. We prove two existence theorems for the cases where the orientor field is convex valued and nonconvex valued, respectively. We show that when the orientor field is Lipschitzean, then the set of solutions of the nonconvex problem is dense in the set of solutions of the convexified problem.
A simple dynamical problem involving unilateral contact and dry friction of Coulomb type is considered as an archetype. We are concerned with the existence and uniqueness of solutions of the system with Cauchy data. In the frictionless case, it is known [Schatzman, Nonlinear Anal. Theory, Methods Appl. 2 (1978) 355–373] that pathologies of non-uniqueness can exist, even if all the data are of class . However, uniqueness is recovered provided that the data are analytic [Ballard, Arch. Rational Mech....
A simple dynamical problem involving unilateral contact and dry friction of Coulomb type is considered as an archetype. We are concerned with the existence and uniqueness of solutions of the system with Cauchy data. In the frictionless case, it is known [Schatzman, Nonlinear Anal. Theory, Methods Appl.2 (1978) 355–373] that pathologies of non-uniqueness can exist, even if all the data are of class C∞. However, uniqueness is recovered provided that the data are analytic [Ballard, Arch. Rational...
We study the existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Our results are based on Schauder's fixed point theorem and the Banach contraction principle fixed point theorem. Examples are provided to illustrate the main results.